STPG
An Assistant for Generating Test Program Software

Charles E. Matthews WLO Somers, NY CEM (@ RHQVMOS8

Abstract: Automatic program generation has been investigated within the
Al field for some time. The most successful approach thus far is the
Programmer's Apprentice Project at MIT. The State Test Program Generator
(STPG) utilizes some of the concepts from the PA Project to generate test
software. The current implementation of STPG is targeted for generating
test cases to test the knowledge bases for a hardware configurator (the
IBM Solution Manager project). This methodology, however, is equally ap-
plicable to other target domains. To verify this approach, an additional
generator for creating test cases for hardware designs is planned.

Introduction: This paper describes the current development and use of
an automated assistant for generating test case software. Test generation
is an important issue for the development process because it is the only
mechanism available for determining whether the product which was actu-
ally built matches the "intentions'" of the product designer. When the
details of these "intentions' pass a certain limit of complexity, human
testers become overloaded with the intricacies of the interrelationships
and dependencies between portions of the design. Other test generation
tools, e.g. the RTPG tool used by the AS/400 and RS/6000 hardware design
groups, rely upon a random or pseudo-random generation of test instruction
sequences for their test cases. The STPG approach uses a data driven model
of the design to guide the generation of test instructions. The model is
dependent upon the representation of the design functions within a data-
base or knowledge base.

PKB
|
I
\Y
User =---> §STPG =-=--> Test Case =---> Driver/ =---> Executable
Tool Instructions Translator Platform

Figure 1 - STPG Process

The ISM project captures all of the product specific configuration data
in a Product Knowledge Base (PKB). The PKB has a pre-defined syntax and
structure which is interpreted by the STPG tool to create a model of the
design. This model is used interactively by the user to create test case
instructions. These instructions are interpreted by a driver for a given
executable platform. This final driver step is important for portability
reasons, but it is not required by the methodology.

-5



Scope: Automatic test generation cannot solve all testing problems nor
can it find every type of error. For the current environment design errors
are separated into three classes.

1. The PKB contains incorrect knowledge which is semantically correct.
2. The PKB lacks knowledge.
3. The PKB contains incorrect knowledge which is semantically incorrect.

Type 1 errors appear when the design database contains information which
appears logically and semantically correct, but the data is functionally
incorrect. For a hardware configuration this type of error is illustrated
if a disk drive is configured with the wrong adapter card. Logically, the
design is correct because an adapter card is attached to the drive, how-
ever, it is the wrong adapter card. Unfortunately, these errors are ex-
tremely difficult to find with this approach because the test generation
model uses a data driven paradigm. The test generator interprets the de-
sign model directly from the PKB data. If the model is semantically sound
but functionally incorrect, the test software will generate test cases
for the incorrect design. These errors will only be found by inspecting
the test results from the viewpoint of the "correct" design model. In most
cases this model only exists as a mental model in the designer's mind.

Type 2 errors illustrate the "incomplete knowledge problem'. A special
case of these errors are known as dangling objects. A dangling object is
a PKB object which either is not referenced by anything else or does not
itself reference anything else. Dangling objects can be detected pro-
grammatically so special test cases for them are rarely required.

Other type 2 errors are diagnosed with the same approach as type 1 errors.
Inspection of the test case results with the designer's mental model of
the product is required to find these errors.

Type 3 errors comprise the majority of the errors found by testing. These
errors are the targeted objective of most of the test cases generated by
the STPG program.

Methodology: Each test case has three components: an environment de-
scription, actions, and result tests. The environment description sets
certain global parameters which remain constant for the duration of the
test case. In the ISM application the environment consists of the con-
figuration date, the ship date, the country code, etc. Test case actions
and result tests are usually intermixed instructions. A sequence of
actions will be specified. Because the STPG program has derived a model
of the design, the program can infer some of the responses to the action
commands. The actual responses of the design are compared to the STPG
model. Anomalies are reported as test case failures to the testing team.

The ISM project has an additional testing complication in that it is it-
self a data-driven program. Thus, a configuration scenario must be iden-
tified to the STPG tool. This scenario is built by identifying the
subsystems which will be configured for the ensuing test cases. A know-
ledge base for a 3090 processor may contain information about many sub-
systems, but a configuration scenario identifies the subset of those
subsystems which will be used for the current test generation session.



STPG Menus: The initial program screen contains four pull-down menus:
Subsystems, Test Abstractions, Environment Parameters, and the Quit
Options. The PKBs loaded into the STPG tool determine which subsystems
are present for a configuration. Selecting the Subsystem Menu allows the
user to select the desired subset. The Environment Parameters menu lists
the global test parameters. Selecting a parameter allows its value to be
edited. The Quit menu identifies when the test case session is completed
and whether or not it should be saved.

The intelligence of the STPG tool, however, is gated primarily by the
sophistication of the Test Abstraction menu. Each item of this menu cor-
responds to a different cognitive operation which is typically done by a
test case author. Whenever the STPG tool is modified to a new testing
domain, a knowledge engineer must study that domain enough to identify
the set of generic test abstractions which constitute the problem domain
for that testing environment.

Test abstractions for the configuration domain follow in the next section.
Appropriate test abstractions for a hardware test domain would be: test
the data flow, test multiple transfers across the SCSI bus, test the bus
arbitration logic, etc. Appropriate test abstractions for a microcode
test domain would be: test virtual address translation, test data accesses
across page boundaries, test message handling among the SEND/RECEIVE
queues, etc. Implementing the STPG tool for a given test domain requires
a knowledge acquisition effort for that domain. However, once the test
abstractions for that domain are determined, these abstractions should
be similar for different designs within the same domain.

Test Abstractions: The problem domain for configurator testing contains
approximately twenty abstract test operations. The following list is an
example subset of those operations.

« Device autoselects another device

- Device backtracking

- Device requires a feature, mandatory

= Device requires a feature, choice permitted
. Device requires a resource, mandatory

= Device requires a resource, choice permitted

. Feature requires another feature through a secondary product re-
quirement

= Feature requires a resource provided by the device

Each abstract test operation requires one or more rules which replicate
a test case author's actions for testing that operation with the given
PKB model. Depending upon the specific operation, actions may proceed
forward in time or backwards in time. For example, the rule for the action
Device autoselects another device creates the following sequence of
events.



Some PKB devices are automatically selected by the configuration of a
previous device. Identifying a PKB device which is to be selected auto-
matically becomes a goal whose resolution is dependent upon the previous
selection/configuration of the antecedant device. Thus, the required
actions are running backwards in time. If the antecedant device has pre-
requisite conditions upon it, the chain of configuration events can become
lengthy. For example, if device DA-PS30 is automatically selected by
device DASD-30 and DASD-30 requires CPU-2, then a user request to
autoselect device DA-PS30 results in the following test instructions.

Select CPU-2;
Select DASD-30;
Test for the presence of DA-PS30;

In this case the test user did not need to know which devices actually
caused the automatic selection of device DA-PS30. The STPG tool created
the appropriate sequence of instructions based upon the design model in-
ferred from the PKB.

On the other hand, the rule for the action Device Backtracking tests the
configurator logic for removing previously configured devices from a
given configuration. Selecting the device to be removed can only be done
once a test action selecting that device has already been specified. Thus,
the actions are moving forward in time. Consider the test case listed
above. If the user elects to remove device DASD-30 from the configuration,
the test case becomes:

Select CPU-2;
Select DASD-30;
Test for the presence of DA-PS30;
Remove DASD-30;
Test for the absence of DASD-30;
Test for the absence of DA-PS30;

In this example the test case author has only specified two actions, but
the STPG program generated the correct test case based upon those abstract
actions. This tool allows the test case author to specify test cases at
a higher level of abstraction than ever allowed before.

Summary: The STPG program allows the test case author to create test
cases interactively with two distinctions from previous tools. 1) The tool
maintains a model of the complex dependencies between objects in the PKB.
As long as this model is correct, then STPG generates functionally correct
test cases at all times. 2) The tool allows the test case author to think
at a higher cognitive level of abstraction. The test engineer should
concentrate upon designing tests. The tool should create the instruction
sequence which implements those tests.

There are a number of advantages to this approach.

1. Increased productivity: This tool allows the generation of test case
software with much less time and manpower resources. Fewer people can
create larger test case libraries than current testing organizations



can do today. The STPG tool will shift the limiting test bottleneck
from test case generation to somewhere else.

2. More reliable testing: Because the STPG tool generates test cases
based upon its model of the design, consistent test cases are gener-
ated. If the model is correct, no test case errors will ever occur.
Thus, we have a tool which always generates functionally correct test
software.

3. Faster response to design changes: Design changes are a fact of life.
Current test environments require the test engineers to track and to
recompile their private mental models of the design any time a design
change occurs. The STPG tool replaces all of that with one "golden
source' for the design.

A "proof of concept" version of STPG is completed. It is coded in the
ART-IM shell running in MS-DOS on the PS/2. A production version of STPG
for the ISM PKBs is scheduled for 9/91. The production version will be
coded in KEE running on the PC/RT. Negotiations with one of the hardware
development groups in Rochester is underway to implement STPG for hardware
test cases.



