
Zualkernan, I. A., El-Naaj, S. A., Papadopoulos, M., Al-Amoudi, B. K., & Matthews, C. E. (2009). Automatic Generation of Just-
in-time Online Assessments from Software Design Models. Educational Technology & Society, 12 (1), 173–192.

173 ISSN 1436-4522 (online) and 1176-3647 (print). © International Forum of Educational Technology & Society (IFETS). The authors and the forum jointly retain the
copyright of the articles. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear the full citation on the first page. Copyrights for components of this work owned by
others than IFETS must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from the editors at kinshuk@ieee.org.

Automatic Generation of Just-in-time Online Assessments from Software
Design Models

Imran A. Zualkernan1, Salim Abou El-Naaj2, Maria Papadopoulos3, Budoor K. Al-Amoudi4

and Charles E. Matthews5
1American University of Sharjah, Sharjah, U.A.E. ‘’ Tel: 971-50-6260243 // Fax: 971-6-5152979 //

izualkernan@aus.edu
2EDS, Dubai, General Motors DWTC, P.O. Box 9233, Dubai, U.A.E. // Tel: 971-50-8115582 // Fax: +971-4-331

4102 // salim.abouelnaaj@gm.com
3International School of Choueifat, P.O. Box 15679, Dubai, U.A.E. // Tel: 971-4-2220560 // Fax: 971-4-2257955 //

maria.mitchae84@gmail.com
4Thuraya Satellite Telecommunications Company, P.O. Box 29222, Sharjah, U.A.E. // Tel: 971-6-8080482 // Fax:

971-6-8828484 // b_alamoudi@thuraya.com
5Fifth Generation Systems, Ltd., Markham, Ontario, Canada // Tel: (905) 887-8522 // charles.matthews@acm.org

ABSTRACT

Computer software is pervasive in today’s society. The rate at which new versions of computer software
products are released is phenomenal when compared to the release rate of new products in traditional industries
such as aircraft building. This rapid rate of change can partially explain why most certifications in the software
industry are generic as opposed to those in the aircraft-building industry where engineers and technicians are
certified to work on a specific aircraft. For example, a software engineer may be certified on a database
management system, but not on a specific implementation based on the database management system. Hence,
software engineers are allowed to make critical changes to specific designs for the next release of a software
product with little formal assessment of their understanding of the design. This paper presents a system that
automatically generates just-in-time online assessments for judging a software engineer’s comprehension of
artifacts representing software designs. The assessments thus generated are compliant with the IMS-QTI 2.1
standard. The system is based on the AXIS web-services architecture and provides a priori statistical estimates
of effectiveness of each individually generated assessment.

Keywords
Design certification, Assessment generation, QTI, Web services

Introduction

New versions of software products are released every few months. Given the mission-critical nature of software
products today, it is reasonable to expect that software engineers should be “certified” on a software design to ensure
that they understand the design before being allowed to change it for the next release. However, this is often not the
case. Most software design methodologies employ a “tell and pray” pedagogy in which the engineers are given the
software product along with its design documents and are expected to pick up the design as they work; the engineers
are almost never assessed to ensure that they understand the design.

In many situations, however, engineers are provided with visualization tools to help them understand software
designs (Hundausen, Douglas & Stasko, 2002; Stasko, Dominique, Brown, & Price, 1988). These tools range from
automatic help-file generators at the code level to browsers at the design and specification level (Confora, Cimitile,
Carlini, & De Lucia, 1998; Hendrix, Cross, & Maghsoodloo, 2002; Lanza & Ducasse, 2003; Lehman, 1989; Tonella,
2003; Luqi, Berzins, & Qiao, 2004). While these tools help an engineer explore existing designs, they provide little
guidance on how well an engineer understands a design.

Similarly, inspection and walkthrough methods (Anderson, Reps, & Teittelbaum, 1989; Brykczynski, 1999; Miller &
Yin, 2004; Traore & Aredo, 2004) are often used as collaborative and reflective design exercises in which engineers
are forced to articulate, reflect, and defend their software designs. Inspection and walkthrough methods are effective
in ensuring quality of new software designs. Like visual tools, however, inspection and walkthrough methods also
offer little in establishing how well an engineer understands a particular design in any meaningful way.

174

Using formal methods is another approach to understanding properties of software designs (Apvrille, Courtiat, Lohr,
& Saqui-Sannes, 2004; Eshuis & Wieringa, 2004. However, like other approaches mentioned earlier, these methods
also fail to provide an objective assessment of an engineer’s level of understanding of a design.

Obviously, it is possible to manually construct exams to judge an engineer’s level of understanding of a software
design. However, every few months, typical computer software products release a newer version. Therefore, such an
approach is not cost-effective: exams would need to be rewritten every time the design changes.

This paper presents an automated approach to judging a software engineer’s level of comprehension of artifacts
created during software design. This approach is cost-effective because online assessments to determine an
engineer’s level of understanding of a software design are automatically generated and graded; every time the design
changes, assessments can be automatically re-generated.

The paper first presents a framework to formally define the problem and outline an approach. The framework is
followed by a description of architecture and a prototype system based on this approach. Examples of automatically
generated assessments are provided next. The paper ends with a discussion of limitations and conclusions.

Framework

The primary objective of this research is to automatically generate assessments for checking a software engineer’s
level of understanding of software design artifacts or models. For example, the Unified Modeling Language (UML)
(OMG-UML, 2003) currently supports thirteen such models. Each design model is typically an approximation of
some aspect of the software or the world. The task of checking a model against the world is typically called
validation. Similarly, the task of checking a model for internal consistency and completeness is called verification.
The goal of this research is neither validation nor verification. Rather, it is to determine how closely the “mental
model” or adaptation (Simon, 1983) of a software engineer matches the actual design model. Hence, if M is a design
model, the purpose of an assessment is to determine how closely M', the understanding of a software engineer,
matches the actual model M. In other words, the goal of assessment is to approximate (M – M') or the degree to
which the understanding of a software engineer differs from the actual design model.

The meaning of a software engineer’s understanding of a model, M, depends on an “authentic” context of its use
(Brown, Collins, & Duguid, 1989; Lave & Chaiklin, 1993). This research assumes that this understanding is
inherently related to the use of model M in the context of design. For example, if a model is used to emphasize
logical gaps in reasoning, an understanding of this model consists of a software engineer’s ability to perform the task
of finding such logical gaps. More generally, an understanding of a particular model M is related to a set of related
design tasks.

The framework has two components. The first component describes how to generate assessments from a design
model, and the second describes how to determine the effectiveness of such automatically generated assessments.

Generation of assessments

On surface, the problem of automatic generation of assessments seems related to the problem of automatically
generating test cases from design models (Andrews, France, Ghosh, & Craig, 2003; Bigot et al., 2004; Chow, 1978;
Nebut, Fleurey, Le Traon, & Jézéquel, 2006). However, unlike test cases, which are used for validation and
verification, assessments check the depth of an engineer’s comprehension of a design model. Therefore, this
framework follows Bloom’s (1956) pedagogical categories as the foundation for generating assessments. Bloom
provides generic categories of levels of learning for cognitive tasks, such as knowledge, comprehension, application,
analysis, synthesis, and evaluation. Each successive level of learning requires a higher level of understanding.
Roughly, each question in an assessment is generated using some of the following action verbs corresponding to
each category:

 Knowledge: arrange, define, duplicate, label, list, memorize, name, order, recognize, relate, recall, repeat,
reproduce, or state.

175

 Comprehension: classify, describe, discuss, explain, express, identify, indicate, locate, recognize report,
restate, review, select, or translate.

 Application: apply, demonstrate, dramatize, employ, illustrate, interpret, operate, practice, schedule, sketch,
solve, transcribe, use, or write.

 Analysis: analyze, calculate, categorize, compare, contrast, correlate, criticize, diagram, differentiate,
discriminate, distinguish, examine, experiment, prove, question, or test.

 Synthesis: arrange, assemble, collect, compose, construct, create, design, develop, formulate, integrate,
manage, organize, plan, prepare, propose, or set up.

 Evaluation: appraise, argue, assess, attach, choose, defend, estimate, evaluate, judge, predict, rate, select,
support, or value.

Therefore, for a particular design model, an application of Bloom’s categories leads to the generation of assessment
questions at each of the six levels of understanding.

This research is currently focused on automatic generation of assessments for activity diagrams. Activity diagrams
are a type of model commonly used in software design. An activity diagram for making a beverage is shown in
Figure 1. As Figure 1 shows, an activity diagram typically captures control flow in a situation. For example, Figure 1
shows that a coffee machine has to be turned on before brewing coffee. An activity diagram also captures
coordination or syncing points when activities are allowed to occur concurrently until some point in time. For
example, in Figure 1, putting coffee in filter, adding water, and getting cups can happen concurrently. However, all
three activities must finish before coffee can be poured. This condition is indicated by the horizontal bar in the
figure. Finally, activity diagrams also include “guards” or conditions such as “coffee not found” that lead to different
branching based on decision points indicated by the diamond symbol.

Figure 1. A sample activity diagram for drinking coffee (Adapted from OMG-UML, 2003)

176

The activity diagram shown in Figure 1 will now be used to illustrate how assessments at various levels of Bloom’s
hierarchy can be generated from an arbitrary activity diagram.

One type of knowledge-level assessment is a simple recall. For example, for the activity diagram shown in Figure 1,
a recall-based assessment consists of asking an engineer to indicate if “pour coffee” was one of the activities in the
diagram. Another variation may be to ask a software engineer to list the various activities in the diagram.

An assessment at the comprehension level is constructed by asking an engineer to describe and explain what is in the
activity diagram. For example, a software engineer may be asked if coffee can be poured (i.e., “pour coffee”) without
both “brew coffee” and “get cups” finishing first. This information is embedded in the activity diagram via the
horizontal bar (see Figure 1). As this example illustrates, to answer such questions correctly, an engineer needs to
understand how to interpret the relationships among the various components of an activity diagram.

An assessment at the application level is constructed by asking a software engineer to apply what she knows from
this activity diagram. For example, a software engineer may be asked to produce a sequence of activities (if any) that
start from the “find beverage” activity and ultimately lead to the “pour coffee” activity, under the condition that no
coffee was found. In order to perform correctly for this assessment, a software engineer needs to understand how to
apply conditions to generate a specific path through the activity diagram.

An assessment at the analysis level consists of the ability to use facts and inferences to understand properties of the
activity diagram. For example, a software engineer may be asked to describe conditions (if any) under which “get
cola” and “get cups” happen concurrently. A successful performance of this assessment requires that the engineer be
able to calculate the conditions under which specific paths can be taken concurrently in the activity diagram.

An assessment at the synthesis level requires building a structure or pattern from diverse elements to create new
meaning in the activity diagram. For example, a software engineer may be asked to alter the activity diagram to
enable the use of cups for drinking cola as well. A successful performance at this level requires the engineer to have
the ability to successfully modify the existing activity diagram to satisfy additional functionality or constraints.

Finally, an assessment at the evaluation level requires judgment about the value of ideas or materials included in the
activity diagram. For example, one may ask the software engineer if the activity diagram handles exceptional
conditions such as the coffee machine not turning on appropriately. In general, various properties of the activity
diagram such as usability, reliability, and security can be assessed at this level.

In summary, the general framework for generating assessments is based on Bloom’s taxonomy. The description and
guide words at each level are used to create specific heuristics that generate questions for an arbitrary activity
diagram. A typical assessment consists of a number of questions from each level of understanding.

How many questions are sufficient to ensure that an engineer’s understanding has been judged adequately? This
issue is addressed by the creation of an assessment risk profile, described next.

Creation of assessment risk profile

The purpose of an assessment risk profile is to provide a reasonable measure of “goodness” of an automatically
generated assessment for a particular activity diagram. More specifically, the purpose of an assessment risk profile is
to provide an estimate of the relationship between the size of an assessment (i.e., the number of questions being
asked) and the probability that an assessment of this size will catch or uncover particular types of misunderstandings.

Critical to the creation of a risk profile is the concept of a misunderstanding. Misunderstandings are commonly
occurring differences between the actual model (e.g., the activity diagram) and how those differences are understood
by a software engineer. For example, in the activity diagram shown in Figure 1, a software engineer may have the
misunderstanding that brewing coffee comes before turning on the machine. Another misunderstanding may be that
“pour coffee” does not exist at all. This research uses the Hazard Operators (HAZOP) Kim, Clark, & McDermid,
1999) scheme to generate classes of misunderstandings for activity diagrams, as shown in Table 1.

177

Each row in Table 1 represents a class of misunderstandings in an activity diagram. Each class of misunderstanding
can have different manifestations. Table 2 shows different manifestations for each class of misunderstanding in a
graphical fashion. The first column in Table 2 shows a manifestation of misunderstanding. The second column in
Table 2 shows an example of a portion of an activity diagram. The third column shows how the portion of an activity
diagram in the second column is misunderstood. For example, as Table 1 shows, the AS_WELL_AS class represents
those misunderstandings that maintain the original intent of the activity diagram but adds additional spurious
behaviors. Two manifestations of such misunderstandings (additional loop edge and additional reverse edge without
removing the original edge) are shown graphically in the first and second rows of Table 2. The first row of Table 2
further shows an example of how a simple three-node activity diagram can be misunderstood by adding an additional
loop edge (i.e., to node C).

Table 1. HAZOP classification for misunderstandings in an activity diagram
Class Nature of misunderstanding Manifestations of misunderstanding

AS_WELL_AS The specific intent of the activity
diagram is maintained but the
misunderstanding yields additional
results.

1. Additional loop edge
2. Additional reverse edge without removing the

original edge

PART_OF Only some of the intention in the
activity diagram is achieved.

3. Missing an edge
4. Missing an activity (and reconnected edges)

REVERSE Reverse flow — flow in the activity
diagram is in the wrong direction.

5. Reversed edge
6. Two consecutive activities swapped

OTHER_THAN A result other than initial intention is
achieved while maintaining the
structure of the activity diagram.

7. One activity substituted for another
8. An additional activity between two activities

Another general class of misunderstandings in Table 1 is PART_OF. Manifestations of this class of
misunderstandings are missing edges or activities: the software engineer believes that the activity does not include a
specific activity or an edge. A third class of misunderstandings in Table 1 is represented by the REVERSE class. In
the case of edges, the REVERSE class translates into the belief by a software engineer that an edge is reversed. In the
case of an activity, REVERSE misunderstanding may exist if the engineer believes that two contiguous activities are
actually swapped. Finally, the OTHER_THAN misunderstandings are those cases in which the original structure of
the activity diagram is believed to be about the same but additional content is substituted. For example, an engineer
may have the right structure of the activity diagram, but may substitute or confuse one activity for another. A more
extreme case may be the inclusion of an additional activity between two existing activities.

The “goodness” of an automatically generated assessment can be judged by the assessment’s ability to catch a
particular type of misunderstanding. This is done by using a variant of mutation testing (Boland, Singh, & Cukic,
2003; DeMillo, Lipton, & Sayward, 1978; Howden, 1982). Mutation testing has been used to evaluate test case suites
(i.e., a set of test cases). A mutant (or variation) of a computer program is generated by deliberately applying a
mutation operator to the program. Each mutation operator represents a fault (e.g., a misspelled variable). The
mutated program is then tested using the test suite. If none of the test cases in the test suite fail, then the test suite has
failed to kill the mutant. The failure to kill the mutant means that the specific test suite is not suitable for catching the
fault that was introduced.

Since an assessment consists of a set of questions for a software engineer, the assessment acts much like a test suite.
Similarly, the activity diagram is analogous to a computer program, and a misunderstanding is analogous to a fault.
Therefore, a mechanism similar to mutation testing can be used to evaluate the effectiveness of the assessments thus
generated.

Let Aa ∈ represent an arbitrary activity diagram. A mutation operator M∈μ is applied to the activity diagram a

to generates a set of mutated activity diagrams 'A where {)}('|'' aaaA μ←= . The list of mutation operators (i.e.,

178

M) is based on the misunderstandings shown in Table 2. For example, one mutation operator adds an additional
loop edge to an activity diagram, another mutation operator reverses an edge, and so on.

Let {)}(| aBAGqqQ ←= represent an assessment or a set of automatically generated questions using the approach
described in the previous section. (The approach is called Bloom’s assessment generator [BAG].) Each Qqε
represents one question for the software engineer based on Bloom’s taxonomy.

Finally, for a particular Qqε , Aa ∈ and '' Aa ∈ , let)',,(aaqORACLE represent an oracle that returns true if the
question Qq ∈ produces the same answer for both a and 'a , and false if it does not. For example, suppose the
question “Is ‘add water’ an activity in the activity diagram?” was generated from the activity diagram shown in
Figure 1. The correct answer for this question, based on the original activity diagram, is obviously “yes.” However,
suppose a misunderstanding were introduced in the original activity diagram by removing the activity “add water.”
This is done by applying the mutation operator (4) from Table 2. The resulting mutated activity diagram would be
identical to the original diagram except that the “add water” activity and associated edges would be missing. If one
were to answer the original question using the mutated diagram, the answer would be “no.” This means that the
oracle answers false in this case because the answer to the question in the original and the mutated diagrams are
different. A false answer from the oracle means that a misunderstanding was caught by the question.

Table 2. Example manifestations of misunderstandings in an activity diagram
Manifestation Actual Misunderstood as

1. Additional loop edge

2. Additional reverse edge
without removing the original
edge

3. Missing an edge

A

B C

4. Missing an activity and
reconnected edges A

B D

5. Reversed edge

179

6. Two consecutive activities
swapped

7. One activity substituted for
another

8. Additional activity between
two activities

An algorithm to generate a risk profile for a specific activity diagram Aa ∈ takes a set P = {a, M, k, n} as input, in
which k represents the number of questions in the assessment being generated, n represents the number of
replication representing statistical accuracy, and M is a set of mutation operators. The algorithm carries out
binomial experiments that produce an estimated probability that an assessment with k questions generated from
activity diagram a will catch a particular type of misunderstanding. An outline of the algorithm for the system is
shown below.

Given P = {a, M, k, n}
For each M∈μ do // for all mutation operators

{)}('|'' aaaA μ←= // generate the set of mutated activity diagrams for a
For each '' Aa ∈ do // for all mutations of a

1)(a' ←success
For ni ,1= do // repeat the experiment n times
// randomly generate an assessment with k questions

{)}(| aBAGqqQ ←= where kQ =
For each Qqε do
If)),',((trueqaaORACLE ≡ // the mutated and original gave
// the same answer
then 0)'(←asuccess // one misunderstanding was not caught

()'/
'

)(),,(An
An

isuccesskap ×∑
×

← ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ

The algorithm returns the probability),,(kap μ , that for a specific activity diagram a , an assessment with k
questions will catch a particular misunderstanding injected by a mutation operator μ . Since each application of the
oracle represents a binomial experiment, the statistical bounds on the probability p are given by

180

()'/)1(2/ Anppzp ×−± α

where z represents the normalized score while α represents the Type I error rate.

In summary, the risk profile for each activity diagram is generated by introducing known misunderstandings
repeatedly in the same activity diagram, randomly generating assessments of a particular size and determining how
many of these assessments are able to catch the introduced misunderstandings. This procedure leads to a statistical
profile of how well the technique works for a specific activity diagram in terms of unearthing various types of
misunderstandings.

System architecture

A prototype system based on the framework presented earlier was constructed to automatically generate online
assessments from arbitrary activity diagrams. As shown in Figure 2, the system architecture is based on the Apache
Axis framework for building web services (Axis, 2008). The system relies on Apache Tomcat (Tomcat, 2008) and
uses MySQL (MySQL, 2008) as the back-end database. The system has one primary server that provides assessment
generation services by optionally using distributed clients to calculate the risk profile for an arbitrary activity
diagram. The assessment generation is not computationally expensive because it relies on known graph algorithms
and pattern matching. The calculation of risk profile, however, is computationally expensive because for each profile
all possible mutations of a particular type (say, reverse edge) are applied to an activity diagram, and this process is
replicated depending on the statistical accuracy desired. Distributed clients essentially help tackle this portion of the
computational complexity. The server supports two types of clients. Submit clients (SC) are used to submit activity
diagrams, and processing clients (PC) are used to help generate the risk profile for a particular activity diagram. Each
of these is described below.

Server

The server supports two SOAP (Soap, 2008) interfaces. The first interface is a submit activity diagram interface (S).
This interface allows any SOAP client to submit an activity diagram to generate an assessment. In addition to
submitting an activity diagram, the client also specifies the number of questions in the assessment (k), the mutation
operators to be used, and a sample size (n) for the risk profile. The server, in turn, generates and returns an
assessment and a risk profile to the client. The second interface is a processing client interface (P) that distributes and
runs mutations for the risk profile and returns the results to the server.

Figure 2. System architecture

181

The server has three primary components: the Bloom assessment generator (BAG), the work distribution layer
(WDL), and the results tabulation layer (RTL). A SOAP client connects to the submit interface (S) of the server to
provide a job to execute. A typical job consists of an activity diagram in the form of an XMI file (OMG-XMI, 2006),
the mutation operators to apply, the number of questions in each assessment, and the sample size. The BAG takes the
XMI file representing an activity diagram as input and generates an assessment for the activity diagram as an XML
file based on the IMS QTI format (IMS-QTI, 2006).

Figure 3. A knowledge-level heuristic generating a multiple-choice question

Figure 4. A comprehension-level heuristic for generating a true/false question

182

BAG is implemented using Java, SWI-Prolog (Clocksin & Mellish 1994; SWI-Prolog, 2008), and JPL Java APIs
(http://sourceforge.net/projects/jpl). BAG consists of a collection of heuristics that are organized according to
Bloom’s levels. Each level incorporates a number of pedagogical heuristics. From a learning perspective, a software
engineer needs to learn the sequencing and conditions under which particular activities can occur in an activity
diagram. This is reflected in most heuristics. These heuristics are encoded as rules in the Prolog programming
language. Each heuristic is parameterized with respect to the various components of an activity diagram. Figure 3
shows the pseudo-code for one such heuristic at the knowledge level. This heuristic is able to generate questions that
ask a software engineer to order a set of activities between two arbitrarily selected activities (ax and ay) for a
particular activity diagram.

Figure 4 shows an example of a heuristic that generates a true/false question asking the user to select activities that
can be potentially concurrent. As the figure shows, the heuristic randomly generates both positive (true) and negative
(false) questions.

Finally, Figure 5 shows an example of a heuristic at the synthesis level. This heuristic taps into a software engineer’s
ability to effect changes to the existing activity diagram and hence is at the synthesis level. In order to be able to
answer questions generated from this heuristic, the software engineer needs to work through the consequences of
changes in the activity diagram.

Generate_t/f_syn_12(activity a)
{
 ax = randomly select an activity from
 activity diagram a.
 ay = randomly select an activity that
 follows activity ax.
 az = randomly select another activity
 that follows activity ax.

Generate all paths between ax and az after
deleting an edge between ax and ay. If there
is at least one path then correct_answer =
true. Otherwise, the correct_answer = false.

Generate the QTI 2.1 code for the following
question template:

“If an edge between activity ax and activity
ay is deleted, will the user still be able to
reach activity az?”

 with the correct answer
 being correct_answer.

}
Figure 5. A synthesis-level heuristic for generating a true/false question

The WDL takes the activity diagram, the generated assessment, and the sample size representing statistical accuracy
and splits and assigns various mutation tasks for generating the risk profile to different processing clients. Finally,
the results tabulation layer (RTL) consolidates the results received from various processing clients.

Once an assessment is generated, the WDL divides and assigns the job to various processing clients to generate the
risk profile for the job. For example, the sample of jobs submitted to the server shown in Table 3 for two activity
diagrams will be distributed as tasks to various processing clients as shown in Table 4.

183

Table 3. Sample jobs submitted to the server
Job M n k
1 {1, 2} 100 20

2 {2, 3} 50 10

M is a set of mutation operators
n is the number of replication representing statistical accuracy
k is the number of questions in the assessment being generated

Table 4. Mapping of jobs to tasks
Task Job μ n k

1 1 1 50 20
2 1 1 50 20
3 1 2 50 20
4 1 2 50 20
5 2 2 25 10
6 2 2 25 10
7 2 3 25 10
8 2 3 25 10

μ is a mutation operator
n is the number of replications representing statistical accuracy
k is the number of questions in the assessment being generated

The server waits for processing clients to attempt connection and assigns a unique identifier to each client. Once the
client is connected, the server sends the parameters for the task, along with the required files, to the processing client.
When the client sends back the results for the task it received, the server records these results in its database and sets
the task to be completed.

Submitting clients

Since the server supports the SOAP protocol, clients can be written in any programming language that supports the
SOAP protocol. These clients connect to the server through the S interface as shown in Figure 2. Figure 6 shows one
such SOAP client (implemented in Java) that allows the user to select the mutation operators and submit an activity
diagram. The submitting client is able to watch the progress on its job via a status bar.

Processing clients

Client nodes that implement the algorithm described earlier have three layers as shown in Figure 2. These clients
connect to the server through the processing client (P) interface. The mutation analysis framework layer (MAFL)
provides services related to creating mutations and applying the ORACLE (OR) to determine the results. In addition,
each client includes BAG to randomly create an assessment of a particular size (number of questions) while the
ORACLE determines whether a question yields the same results for the normal and the mutated activity diagrams.

Each processing client initiates communications with the server. When the client has resources, it continuously
attempts to connect the server in order to receive a unique identifier. Once the connection is established, the client
requests the task from the server and, upon receiving the job, the client starts mutation testing based on the
parameters it has received. After completion, the client calls the return result method to give back the results to the
server. After dispatching the results, the processing client probes the server for any additional tasks to process. The
MAFL is organized according to the HAZOP classification described earlier. Currently, the MAFL includes all the
misunderstandings in Table 2 implemented as mutation operators.

184

Figure 6. A sample submit client

Evaluation

The system currently contains 115 rules for generating questions at various levels of the Bloom’s taxonomy. Figures
7 and 8 show sample questions from an assessment that was automatically generated from the activity diagram
shown in Figure 1.

Figure 7. A knowledge-level sample question for the drink-coffee activity diagram

185

Figure 9 shows how the results of the assessment are automatically scored and presented to a software engineer
through a commercial learning management system supporting the IMS QTI assessment format.

The risk profile for the drink-coffee activity diagram shown in Figure 1 (labeled Activity B) is shown in Figure 10.
Figure 10 shows that as the number of questions in an assessment increases, so does the probability of catching each
type of misunderstanding. However, based on the current set of rules, some misunderstandings are easier to catch
than others. For example, as Figure 10 shows, the reversed-edge misunderstanding, where an engineer believes that
an edge is pointing in the wrong direction, is fairly easy to catch because the number of questions in an assessment is
increased beyond five. On the other hand, misunderstandings such as an additional reversed edge, where an engineer
believes that an additional reversed edge exists between two activities, are difficult to catch; the probability of
catching such misunderstandings for this specific activity diagram is less than 30 percent even with an assessment
containing twenty questions. In addition, as the number of questions is doubled from ten to twenty, the probability of
catching this misunderstanding only goes up by about 10 percent.

Figure 8. A comprehension-level sample question for the drink-coffee activity diagram

Figure 9. Results of an assessment from the drink-coffee activity diagram

186

Number of questions

Pr
ob

ab
ilit

y
of

 c
at

ch
in

g
a

m
is

un
de

rs
ta

nd
in

g

201051

1.0

0.8

0.6

0.4

0.2

0.0

Misunderstanding

Addl. Loop Edge
Addl. Rev. Edge
Missing Activity
Missing Edge
Reversed Edge
Swapped Activities

Activity Substituted
Additional Activity

Activity B

Figure 10. Risk profile for the drink-coffee activity diagram

The risk profile for the activity diagram shown in Figure 10 also provides additional useful information. For
example, if an engineer generates an assessment with ten questions, the risk profile shows that there is about a 50
percent probability (p = 0.5044 with a 95 percent confidence interval of +/−0.0224) that a misunderstanding like the
additional loop edge will be missed by the assessment.

Number of questions

Pr
ob

ab
ilit

y
of

 c
at

ch
in

g
a

m
is

un
de

rs
ta

nd
in

g

201051

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Misunderstanding

Addl. Loop Edge
Addl. Rev. Edge
Missing Activity
Missing Edge
Reversed Edge
Swapped Activities

Activity Substituted
Additional Activity

Activity A

Figure 11. Risk profile for an activity diagram with eight activities

187

Figure 11 shows the risk profile for another activity diagram (Activity Diagram A) that is much smaller (only eight
activities) and simpler than the Activity Diagram B. Figure 12 shows that for Activity Diagram A, the additional
reversed-edge misunderstanding is also the most difficult (lowest probability) to catch. However, the probability of
catching this misunderstanding with a ten-question assessment is much higher (p = 0.36 with a 95 percent confidence
interval of +/−0.033) than the probability for Activity Diagram B (p = 0.18 with a 95 percent confidence interval of
+/−0.017).

Each activity diagram has a unique risk profile that is not necessarily tied to its size. For example, Figure 12 shows
the risk profile for an activity diagram (Activity Diagram C) with 24 activities. The probability of catching a
reversed-edge misunderstanding for this activity diagram is actually higher (p = 0.28 with a 95 percent confidence
interval of +/−0.18) than a smaller activity diagram (Activity Diagram B, for example).

In addition to the results shown above, the system presented in this paper has been successfully tested on one
hundred arbitrary activity diagrams collected from published sources (mean number of activities/activity diagram =
15.56, SD = 8.22; mean number of edges/activity diagram = 13.65, SD = 8.26). Risk profiles were also generated for
these diagrams by varying the size of the assessments from 1 to 20 questions in increments of five questions. Thirty
Pentium IV machines were used as processing clients. As expected, each activity diagram resulted in a unique risk
profile.

Number of questions

Pr
ob

ab
ilit

y
of

 c
at

ch
in

g
a

m
is

un
de

rs
ta

nd
in

g

201051

1.0

0.8

0.6

0.4

0.2

0.0

Misunderstanding

Addl. Loop Edge
Addl. Rev. Edge
Missing Activity
Missing Edge
Reversed Edge
Swapped Activities

Activity Substituted
Additional Activity

Activity C

Figure 12. Risk profile for an activity diagram with 24 activities

The methodology and the tools presented in this paper were also applied to a portion of a mission-critical software
system called the Gas Compliance System (or GCS Energy) (GCS, 2008). GCS Energy is an integrated suite of
software modules designed to assist a natural gas utility with compliance tracking and auditing. In the United States,
the Department of Transportation’s Office of Pipeline Safety (OPS) mandates periodic inspection, testing, and
maintenance tasks for gas pipeline systems through DOT Part 192 — Transportation of Natural or Other Gas by
Pipeline: Minimum Federal Safety Standards. This federal standard requires that pipeline operators perform
compliance tasks at thousands of sites, covering hundreds of miles. Upon completion, these tasks must be recorded,
stored, and made available for review in the event of an OPS audit. Failing an audit can result in the leverage of large
fines against a natural gas utility.

188

Based on principles found in the American Gas Association’s GPTC Guide, GCS Energy’s system manages
compliance tracking for various facilities within a natural gas utility company. The various subsystem modules that
track compliance activities include atmospheric corrosion, corrosion tracking, leak survey, leak tracking, pressure
control stations, exposed pipe exam, pipeline patrol, and valve tracking.

One portion of the valve tracking system manages inspections. Pipeline operators must inspect every installed valve
within a periodic time frame as determined by the DOT Part 192 regulations. Various valve parameters determine
not only the inspection frequency but also the inspection questions and whether the questions are mandatory or
optional. Figure 13 displays some of these parameters in the valve detail window.

The corresponding activity diagram that models the valve inspection functionality for GCS Energy is shown in
Figure 14.

Figure 13. Sample screen for entering valve parameters in GCS

Some of the questions automatically generated by the system described here for the activity diagram shown in Figure
15 are discussed below.

Q1: Starting from the initial state, can an operator do “Return to
previous window” without taking the decision ‘valid required attr.
values’?

The correct answer to this question is “yes.” The software engineer needs to know that an operator can choose to
cancel the inspection task and return to the previous window. This operation skips any validation checks because the
user is discarding the inspection task. An incorrect answer to this question exposes a serious lack of understanding on
the part of the software engineer who does not understand that a user is able to cancel the inspection task and go back
to the previous window before the required attribute values are validated.

Q2: What necessary action must be performed in order to do “Update
database”?

A) Record completed task data
B) Display Message: Required task question not answered
C) Return to previous window

The correct answer to this question is A. Again, the software engineer needs to know that C cannot occur before A
and that receiving the error message in B means that the database cannot be updated. If a software engineer fails to

189

answer this question, he does not understand that all inspection questions are answered before the database system is
updated. In this context, a software engineer who selects C as the possible answer shows a complete lack of
understanding of the system because returning to the previous window can only be done either if the inspection is
cancelled or if all the requisite inspection tasks have been completed.

Figure 14. An activity diagram for the valve inspection functionality in GCS

Q3: After the condition “completion date < in_service date”, which of
the following are possible immediate successors?

A) Display Message: Inspection task record cannot be performed prior to
equipment install date
B) Update task record with new due and compliance dates
C) Update database

The correct answer to this question is A; the software engineer needs to know that A is the result if the condition test
fails. In addition, the software engineer also needs to know that additional questions must be answered before the
new due and compliance dates can be calculated or the database updated. A software engineer with the requisite
knowledge of the design also knows that “completion date < in_service date” occurs before these other decision
nodes. Therefore, A is the only correct answer.

190

The three questions discussed above show that questions generated by the assessment system probe for a deep
understanding of a software engineer’s knowledge of the software product design, and a failure of such
understanding can lead to potentially catastrophic consequences.

Discussion and limitations

The prototype system constructed shows that it is possible to generate useful assessments automatically from activity
diagrams. In addition, a unique risk profile is provided for each activity diagram.

As is evident, the assessments at the lower levels of Bloom’s taxonomy are fairly context free and can be derived
easily from the syntactic structure of activity diagrams. However, since activity diagrams are semi-formal in nature, a
formal model should lead to a more robust set of questions. As one progresses to higher levels of Bloom’s taxonomy,
the task dimension also becomes more important in one’s ability to generate the right rules. A model of the task can
help in the generation of such questions.

The mutation operators used in this research are based on the HAZOP model. Additional operators can be derived
from bug checklists (Thelin, Runeson, & Wohlin, 2003). Currently, the risk profile assumes a uniform distribution
while generating the assessment questions. However, once a correspondence between the types of misunderstandings
and their frequency in a software engineering environment is established, the assessment generation process can
incorporate this information by increasing the proportion of questions that target frequently occurring
misunderstandings in a particular environment.

Finally, the results presented in this paper are being extended to include the other twelve models of UML.

Conclusion

As designed artifacts like computer software become more complex and life cycles become shorter, the assessment
techniques of the type presented here will become a necessary part of any design cycle. This paper describes a
distributed system that automatically generates standards-based, tool-independent, and just-in-time online
assessments from arbitrary activity diagrams. A key feature of this system is that, in addition to automatically
generating an online assessment, the system provides a unique a priori risk profile for each activity diagram.

The results presented in this paper are limited to one specific model (i.e., the activity diagram) within one
methodology (i.e., UML) in the context of one engineering discipline (i.e., software engineering). In addition, most
assessment heuristics are at lower levels of Bloom’s hierarchy. However, the results presented here have a potential
application in any branch of engineering that constructs formal or symbolic by-products or artifacts as a natural
design activity. For example, CAD/CAM systems for mechanical and civil engineering design are obvious
candidates. Another significant area for application of this approach is process design. Increasingly, businesses’
processes are not only being formalized but are in continuous flux as businesses continuously respond to changes in
their environment. This flux creates a similar problem where the changes in a business’s process are to be conveyed
to all individuals that play a role or come in contact with the process. Again, rather than showing an individual a
“picture” of a changed business process, an approach similar to the one presented in this paper can actually generate
assessments to ensure that process changes have actually been understood.

Using mutation-analysis to generate an a priori estimate of risks associated with a particular assessment is also a
promising side benefit of this approach. However, the effectiveness of this method relies on the availability of
information on the types of misunderstandings that typically occur in specific contexts. The approach has the
potential to be generalized to other disciplines as well. For example, one can imagine a common set of
misunderstandings of a construction blueprint in the context of civil engineering: a missing door, the wrong type of
HVAC pipe, etcetera. Once a taxonomy of such misunderstandings is established in a field, it can be used to create
mutations of an existing design artifact (such as a blueprint) to judge the effectiveness of automatically generated
assessments.

191

In hindsight, the difficulty of constructing heuristics to generate Bloom’s higher level assessments is not surprising;
it is difficult enough to construct such assessments by hand. However, in this research it was possible to arrive at
some rudimentary heuristics at Bloom’s higher levels, such as synthesis. Constructing high-level heuristics presents
an interesting challenge for next phase of this research. Current attempts at constructing such higher-level heuristics
suggest that ultimately domain-specific task models may be required to construct heuristics at higher level of
Bloom’s taxonomy. For example, a sophisticated heuristic at the synthesis level will have to generate synthesis tasks
for a software engineer and automatically mark the engineer’s performance on such tasks. The tasks need to go
beyond the current synthesis heuristics that require an engineer to work through the consequences of various types of
changes to a design artifact. Asking a software engineer to propose a novel solution in the context of an existing
design artifact and automatically generating assessments to judge the feasibility of such solutions are non-trivial
tasks that will likely require a sophisticated task and domain model.

In summary, this paper represents a first set of experiments in automatically generating just-in-time assessments in
the limited domain of software engineering. This approach can be applied to a large number of engineering and
business contexts. The ultimate success of such an approach, however, will depend on one’s ability to generate
specific heuristics for each domain.

Acknowledgements

This research was supported in part by a faculty research grant from the IBM Corporation.

References

Anderson, P., Reps, T., & Teittelbaum, T. (1989). Design and implementation of a fine-grained software inspection
tool. IEEE Transactions on Software Engineering, 29(8), 721–733.

Andrews, A., France, R., Ghosh, S., & Craig, G. (2003). Test adequacy criteria for UML design models. Software
Testing, Verification and Reliability, 13(2), 95–127.

Apvrille, L., Courtiat, J., Lohr, C., & Saqui-Sannes, P. (2004). TURTLE: A real-time UML profile supported by a
formal validation toolkit. IEEE Transactions on Software Engineering, 30(7), 473–487.

Axis (2008). The Apache Axis Project. Retrieved November 12, 2008, from http://ws.apache.org/axis/

Bigot, C., Valot, Y., Gallois, J., Gérard, S., Terrier, F., & Lugato, D. (2004). Validation and automatic test generation
on UML models: the AGATHA approach. International Journal on Software Tools for Technology Transfer, 5(2),
124–139.

Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: The classification of educational goals: Handbook
I, cognitive domain. New York: Longmans, Green.

Boland, P., H. Singh, H, & Cukic, B. (2003). Comparing partition and random testing via majorization and Schur
functions. IEEE Transactions on Software Engineering, 29(1), 88–94.

Brown, J. S., Collins, A., & Duguid, B. (1989). Situated learning and the culture of learning. Education Researcher,
18(1), 32–42.

Brykczynski, B. (1999). A survey of software inspection checklist. ACM Software Engineering Notes, 24(1). 82–89.

Chow, T. C. (1978). Testing design modeled by finite-state machines. IEEE Transactions on Software Engineering,
4(3), 178–186.

Clocksin, W. F., & Mellish, C. S. (1994). Programming in Prolog (4th ed). Springer-Verlag.

Confora, G., Cimitile, A., Carlini, U., & De Lucia, A. (1998). An extensible system for source code analysis. IEEE
Transactions on Software Engineering, 24(9), 721–740.

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints on test data selection: Help for the practicing
programmer, IEEE Computer, 11(4), 34–41.

192

Eshuis, R., & Wieringa, R. (2004). Tool support for verifying UML activity diagrams. IEEE Transactions on
Software Engineering, 30(7), 437–447.

GCS. (2008). Gas Compliance System. Retrieved November 12, 2008, from http://www.eei.com

Hendrix, D., Cross, J. H., & Maghsoodloo, S. (2002). The effectiveness of control structure diagrams in source code
comprehension activities. IEEE Transactions on Software Engineering, 28(5), 463–477.

Howden, W. E. (1982). Weak mutation testing and completeness of test sets. IEEE Transactions on Software
Engineering, 8(4), 371–379.

Hundausen, C., Douglas S., & Stasko, J. (2002). A meta-study of algorithm visualization effectiveness. Journal of
Visual Languages and Computing, 13(3), 259–290.

IMS-QTI (2006). IMS Question & Test Interoperability Specification. Retrieved May 22, 2006, from
http://www.imsglobal.org/question/index.html.

Kim, S., J., Clark, A., & McDermid, J. A. (1999). The rigorous generation of Java mutation using HAZOP. In
Proceedings of the 12th International Conference on Software and Systems Engineering and Their Applications
(ICSSEA ’99), 9–10.

Lanza, M., & Ducasse, S. (2003). Polymetric views: A lightweight visual approach to reverse engineering. IEEE
Transactions on Software Engineering, 29 (9), 782–795.

Lave, J., & Chaiklin, S. (Eds.). (1993). Understanding practice: Perspectives on activity and context, Cambridge:
University of Cambridge Press.

Lehman, J. A. (1989). An empirical comparison of textual and graphical data structure documentation for COBOL
programs. IEEE Transactions on Software Engineering, 14(9), 1131–1135.

Luqi, L., Berzins, V., & Qiao, Y. (2004). Documentation driven development for complex real-time systems. IEEE
Transactions on Software Engineering, 30 (12), 936–952.

Miller, J., & Yin, Z. (2004). A cognitive-based mechanism for constructing software inspection teams. IEEE
Transactions on Software Engineering, 30(11), 811–825.

MySQL (2008). MySQL, Retrieved November 12, 2008, from http://www.mysql.com/

Nebut, C., Fleurey, F., Le Traon, Y., & Jézéquel, J. (2006). Automatic test generation: A use case driven approach.
IEEE Transactions on Software Engineering, 32(3), 140–155.

OMG-UML (2003). Unified modeling language specification. (version 1.5). Retrieved May 21, 2006, from
http://www.omg.org/technology/documents–/formal/uml.htm.

OMG-XMI (2006). XML metadata interchange (XMI) specification, version 1.1 Retrieved May 21, 2006, from
http://www.omg.org/cgi-bin/doc?formal/2000-11-02.

Simon, H. (1983). Sciences of the artificial. Cambridge, MA: MIT Press.

Soap (2008). The SOAP Interface/ Retrieved November 12, 2008, from http://www.w3.org/TR/soap/

Stasko, J, Dominique, J. B., Brown, M. H., & Price, B. A. (1988). Software visualization. Cambridge, MA: MIT
Press.

SWI-Prolog (2008). SWI Prolog. Retrieved November 12, 2008, from http://www.swi-prolog.org

Thelin, T., Runeson, P., & Wohlin, C. (2003). An experimental comparison of usage-based and checklist-based
reading. IEEE Transactions on Software Engineering, 29(8), 687–704.

Tomcat. (2008). The Apache Tomcat Project. Retrieved May 21, 2008, from http://jakarta.apache.org/tomcat

Tonella, P. (2003). Using a concept lattice of decomposition slices for program understanding and impact analysis.
IEEE Transactions on Software Engineering, 29(6), 495–509.

Traore, I., & Aredo, D. B. (2004) Enhancing structured review with model-based verification, IEEE Transactions on
Software Engineering, 30(11), 736–753.

