

Software Fault Diagnostic System
Charles E. Matthews

Fifth Generation Systems, Ltd.

8 Duborg Drive

Markham, ONT L6C 1R4 Canada

cmatt@attglobal.net

Abstract

This paper examines the role of design knowledge

in the software life cycle. How is knowledge about a

program design affected by changes to the source

code? How can program design knowledge be used

by a diagnostic system to identify failing software

components? Which attributes of design knowledge

are relevant for modeling in a design repository?

This paper addresses these questions with respect

to an actual system that was developed to investigate

the acquisition, capture, and representation of design

knowledge for commercial software designs. Existing

components of the system include a central repository

for the program design model, a knowledge

acquisition module for capturing functional and

design specifications and a rule-based diagnostic

component for isolating software faults.

Keywords: Design Modeling, Diagnostic Systems,

Knowledge Acquisition

1. Introduction

Software developers have responsibilities that

extend beyond the act of writing some set of machine

interpretable instructions that represent the

implementation of a computer program. In addition

to program development, the software lifecycle for

any non-trivial computer application should also

include the specification and documentation of the

program requirements, the documentation of the

functional specification (which is the satisfaction of

the requirement specification), the documentation of

the program internal design, and the specification of

application or acceptance tests. This paper focuses

upon the representation of the program internal

design in machine-readable form. Although the

common use for design documentation is to preserve

the design knowledge for the purpose of transferring

that knowledge from one human being to another,

there is value in representing the design knowledge in

machine-readable form. If machine-readable design

knowledge exists, intelligent tools can use that

knowledge to assist humans with maintenance and

diagnostic tasks.

Current research into diagrammatic representation

and reasoning is an active field of investigation. This

paper explores the application of some of the

techniques from diagrammatic reasoning research to

the design of intelligent tools for developing

commercial software products. Specifically, this

paper describes the objectives and architecture for a

rule-based expert system that can assist a user in

diagnosing faults within software applications. The

value of machine-assisted maintenance can be

significant if (or when) the attributes of the human-

centric processes are prohibitively expensive or

inherently unreliable.

2. Historical Beliefs

A common belief within the commercial software

community is that the act of fault isolation and

diagnosis is, inherently, a human ability. It is an art

that is enhanced with experience and can be taught to

new apprentices into the field. During the initial

period of research and development of expert

systems, early investigators also concluded that

software diagnosis was not a practical objective for

expert systems for a number of reasons.

Belief 1: Software faults are all unique. Once a

software defect is fixed, it is gone. Therefore most

diagnostic knowledge has a limited lifespan. Once a

defect is fixed, the unique set of deductive actions

that identified that defect is no longer needed.

Belief 2: Code changes are design changes. Each

code change requires an update to the diagnostic rule

base in order to maintain accuracy.

Belief 3: The cost needed to create a reliable

diagnostic knowledge base is prohibitively expensive

in time and resource.

3. Fault vs. Diagnosis

A software fault (or defect) is an artifact that

exists within the design or within the implementation

of the design. The programmer views a software fault

as a specific set of source code lines. If the source

code lines change, the fault changes – it disappears or

becomes a different fault. Therefore, one could say

that all software faults are defined as a specific

representation of source code. (If the fault is missing

functionality, then the fault is a missing

representation of source code.) Therefore, software

faults are unique.

For example, consider the following sequence of

Pascal code. The function FormatXmlStr is

supposed to search a given string for all occurrences

of the ‘&’ character, replace each occurrence with the

character string ‘&’, and return the resultant

string. However, an error exists in the first line within

the while code block.

function FormatXmlStr(sIn : string) :

 string;

var

 idx : Integer;

 src : string;

begin

 //

 // Search for the & character.

 //

 Result:='';

 src:=sIn;

 idx:=Pos('&', src);

 while (0 < idx) do

 begin

 // The following line is

 // incorrect.

 Result:=Result +

 copy(src, 1, idx) +

 '&';

 src:=copy(src, idx+1, length(src)-

 idx);

 idx:=Pos('&', src);

 end;

 Result:=Result + src;

end;

The design knowledge that function

FormatXmlStr represents could be stated as an

assertion:
FormatXmlStr

 has_intention

 replace_&_in_string;

This code would translate the input string ‘s & t’

into the corresponding string

‘s && t’ which is incorrect behavior. The code

will work correctly by replacing the first line of the

while block with:

Result:=Result +

 copy(src, 1, idx-1) +

 '&';

This is only one of the possible source code

changes that could correct the fault. In all cases

correcting this line of source code removes the fault

without requiring any update or correction to the

design knowledge for the function

FormatXmlString. The design assertion for

FormatXmlString was true before the source code

was changed, and it remains true after the source

code was changed. Because this particular software

fault relied upon the specific line that was in error,

this fault was unique to the source code before the

correction occurred.

On the other hand, software diagnosis can be

viewed as a procedure. In many cases the process of

diagnosis is the process of recognizing when a given

pattern or sequence of events is incorrect. Diagnosis

does not explicitly depend upon the particular source

code under examination. Diagnostic rules or

procedures can be generically applicable to different

faults and source code representations. Diagnostic

procedures can also become more efficient when they

use design-specific knowledge, but this type of

knowledge is not absolutely necessary. Therefore,

software diagnosis is not unique.

Consider the following diagnostic rule:

(defrule r-1 "Diagnostic rule 1"

 (funcObj (name ?func)

 (has_intention

 "replace_&_in_string")

 (inputStr "s & t")

 not (outputStr "s & t"))

 =>

 (printout t

 "Function: " ?sub " is failing. "

 crlf)

)

This rule could identify that FormatXmlString

has a fault by using the previous assertion of design

knowledge about FormatXmlString. This diagnostic

rule does not identify which line in the function is

faulty, but it doesn’t necessarily need to do so. By

identifying which code segment potentially contains

the fault, the rule focuses the programmer’s attention

within the appropriate area of the program.

Multiple faults within the same area of the design

can use the same design-specific diagnostic reasoning

to identify the different faults. The diagnostic

reasoning procedures search for program specific

patterns that occur repeatedly for different faults.

4. Code Changes vs. Design Changes

One of the important properties of diagrammatic

representations or models is that they represent

abstractions, i.e., they abstract out some of the

information and represent other information. [2]

Thus, the nature of an abstraction is that it differs in

some fashion from the thing that it abstracts.

Therefore, a change to the program code does not

necessarily imply the need for a corresponding

change to the program code’s abstraction, i.e., the

design model. As illustrated in the previous example,

changing the defective line of source code did not

affect the assertion about the program design for the

function FormatXmlString. In reality, most code

changes do not affect the design model.

In a previous study, the author analyzed four years

of source code changes to an existing commercial

software application. [8] The conclusion from this

study was that the majority of source code changes

have no effect upon the representation of the design

model.

5. Knowledge Capture Cost

The belief that the cost to create a reliable

diagnostic knowledge base is prohibitively expensive

is based upon two presumptions: (a) the diagnostic

knowledge can only be created by the expenditure of

additional developer time (a scarce resource) and (b)

the minimum amount of time that is necessary to

represent any useful diagnostic knowledge is

significantly large in comparison to the amount of

time that is available.

An essential component for any toolset that uses

design knowledge is a knowledge acquisition module

that can assist with the task of knowledge capture and

representation. The objective of the knowledge

acquisition module is to reduce the knowledge

capture resource cost. One way that the acquisition

module can reduce this cost is to build or to infer

knowledge automatically from existing artifacts of

the design process.

As an example, consider the design object model

for a software program. The object model is an

abstraction of the program implementation, it is a

normal by-product from most programming projects,

and it is design knowledge. Thus, the appropriate

toolset can infer design knowledge directly from the

object model. If the object model exists in a file, an

import utility can read and translate the model into

the knowledge representation schema.

In the event that an import utility for the model

file cannot be created (e.g. the modeling utility uses a

proprietary file format), the knowledge acquisition

tool could still reduce the cost for capturing the

model knowledge by presenting the designer with

some simple question/answer sessions about the

model.

6. Design Knowledge and Diagnostic

Knowledge

The various roles that design knowledge and

models perform within engineering and programming

activities is studied widely. Chandrasekaran has

defined a Functional Representation framework for

describing objects, properties and causal relations. [1]

[4] He argues that a precise language is necessary for

describing objects, properties and causal

relationships. “When systems fail, reasoning about

how to fix them involves reasoning about

malfunctions. When designers are designing, they

look for components that can achieve certain

functions. Predicting how systems would behave

under various conditions of use or abuse also often

requires knowing what the functions of the device

are.”1 Whether or not a formal language is necessary

in order to capture “all” functionality and intent for

an object, this paper presents evidence that the

representation of at least some of the functionality for

an object allows some automatic inference of

diagnostic knowledge.

Novak asserts that expertise in solving problems is

characterized by the ability to set up or to represent a

problem. [7] In addition, he uses models of abstract

software components to investigate the task of

automatic program generation. [9] “We argue that

real programs are based on the use of multiple views

of data, and indeed, that multiple views of actual

objects as different kinds of abstractions are common

in design problems of all kinds.”2 This paper

contends that it is possible to represent the different

abstractions to which Novak refers as part of the

design model. Even if the design model fails to

encode all of the different abstractions for an object,

the features that are encoded are available for

diagnostic use.

In all of these cases, design knowledge or models

are the essential component to studying how objects

and devices interact in complex systems. The

representation of knowledge identifies the constraints

that define the interactions. This paper asserts that

similar constraints are identified and represented that

aid in diagnostic tasks for software faults.

7. Program Modeling

It is fairly easy to conceive of a knowledge base in

which the rules for diagnosing faults are customized

and tightly coupled to the particular device/program

that is being analyzed. Essentially, most model-based

reasoning systems take this approach. The drawback

is the direct dependence of the diagnostic rules upon

the device model.

An alternative approach is to identify meta-rules

that are generically applicable to the problem

domain. When the design-specific knowledge is

added to the knowledge base, the interactions

1 [1] p. 1.
2 [9] p. 9.

between the design-specific knowledge and the meta-

rules produce a diagnostic knowledge base for the

application. Obviously, the critical aspect of this

approach is the identification of appropriate meta-

rules. If the rules are too generic, then it is difficult to

achieve good diagnostic performance. If the rules are

too specific, then the knowledge base is coupled too

tightly to a specific design – increasing the difficulty

in maintaining the knowledge base as the design

changes and evolves.

A deep and thorough understanding of the

problem domain must guide and influence the

definition of the meta-rules. However, the meta-rules

do not necessarily need to encompass all possible

aspects of the problem domain or all possible design

models that could be defined for that problem

domain. The minimum sufficiency for the meta-rules

is that they must cover all design modeling constructs

that are used by the specific design that is being

modeled. Let us examine some of those constructs.

Subsystem Packaging: A common practice for large

applications is to modularize and group modules of

similar features and functions into the same package.

These packages may be called subsystems,

components or libraries. The particular term is

unimportant. The relevant aspect is that the features

and functions within the package have an inherent

similarity.

For example, to identify the subsystems within an

application, use the following description.3

(system

 (has-name Coverscan)

 (has-subsystems

 (GUI, SDM, AS, RGM, IPC))

)

Subsystem Message: One of the commercial designs

that the author studied was a multi-threaded system.

Each of the thread streams was a separate subsystem,

and they communicated with each other by sending

messages to an intra-process controller that queued

the messages for execution for each thread. Because

this messaging mechanism was an essential element

in the design model, the diagnostic rules needed to

account for it.

3 The sample model representations that appear in this paper are
representations only. Do not attach much importance to the

particular syntax of the language. The purpose is to represent the

intent of the model rather than how to propose any specific
modeling language.

(subsystem

 (has-name SDM)

 (handles-message

 (LoadFileMsg,

 LoadHeaderMsg,

 GetRegionInfoMsg,

 SelectForAnalysisMsg))

)

External Interface API: When a collection of

functions or classes is packaged into a library, the

library often publishes its external interface. This

external interface identifies those functions and

classes that are available for access by other users.

(library

 (has-name libACV)

 (has-proc

 (dwACVSetup,

 dwACVSetCheckValue,

 dwACVClose))

 (has-class (CacvObj, CacvCounter))

)

Asynchronous Events: Event handling is a common

requirement for many applications. Almost all GUI-

based applications implicitly handle the common

windowing events, e.g. mouse actions, screen

painting, etc. However, some applications need to

respond to explicit events like serial communication

I/O operations and program interrupts from special

purpose hardware equipment. Most likely, the model

must account for all of the explicit events. The model

could ignore many of the implicit windowing events.

However, the model should account for any

windowing event that initiates any significant

processing. The decision point for deciding which

events are important enough to model is left to the

designer.

(subsystem

 (has-name GUI)

 (handles-event

 (ReqLoadDesign,

 ReqAnalyze,

 ReqLoadRegion))

)

The objective for the model representation is to

represent the design model in programmatic form.

For an object-oriented design, it is possible to

describe the class hierarchy and the class

interrelationships. For subsystems or library modules,

identify the external interface: subsystem messages,

library APIs, common library routines, etc. Identify

the mechanisms by which the outside world

communicates with the subsystem and, in return, how

it communicates with the outside world.

8. Generic diagnostic rules

The expert systems literature contains a number of

references to different meta-rules for diagnosing

faults in complex systems. [6] Some of the simpler

rules are:

1. Divide and conquer – If you know the

expected path of reasoning, select a point in

the middle. If the parameters appear correct

at the focus point, the problem probably

occurs later in the reasoning path.

2. Causal analysis – If you see this, you must

do that.

3. Case-based reasoning (lazy inference) – The

previous time when I saw this, the problem

was that.

4. Easter egging – Browse around. Look for

problems.

Another class of meta-rule is known as a Focus of

Attention Heuristic. [10] The focus of attention rule

starts with a set of possible faulty components and

reduces that initial set to a smaller set by the

elimination of those components that have a low

probability of occurrence. For example, assume the

following design assertions:

(subsystem

 (has-name SDM)

 (handles-message

 (LoadFileMsg,

 GetRegionInfoMsg))

)

(subsystem_message

 (has-name LoadFileMsg)

 (is-implemented-by

 (ClearGlobalInstanceLists,

 ssOpenDsnFile,

 ReadFileInfo))

)

(subsystem_message

 (has-name GetRegionInfoMsg)

 (is-implemented-by

 (HandleGetRegionInfo

 ssInitSelections,

 GetDefinedModulesList,

 copydbpkg,

 GetStateMachineList,

 MakeRootObject,

 SearchForModuleNames,

 copydbobj,

 copydbmod))

)

According to these assertions, the subsystem SDM

handles two messages – LoadFileMsg and

GetRegionInfoMsg. These messages are

implemented by the functions listed in their

respective is-implemented-by attributes. If no other

information is available other than the statement that

the SDM subsystem has a fault someplace, then all of

the code within that subsystem could be the source

for the fault. However, if it is known that the fault

symptoms appear when the subsystem is processing

the message LoadFileMsg, the user should focus

attention upon the functions involved in

implementing LoadFileMsg. There is no claim that

the fault source will truly be found within this set of

functions – only that it is most appropriate to focus

attention upon them until additional data focuses

attention somewhere else.

9. Conclusions

Two significant benefits occur if the design

knowledge for a software system is available in

machine-readable form. First, large software systems

are, by their nature, extremely complex. As systems

grow in complexity, the number of possible

interactions between the different parts of the system

tends to grow, also. After some point it becomes

extremely difficult for anyone to understand and to

manage the complexity of the software without

assistance. Paper documents and class diagrams

provide some assistance, but the ability to navigate

the actual software by encoding the design

knowledge should provide significantly better results.

Second, a characteristic of the software industry

is: the individuals who are responsible for

diagnosing, maintaining, and extending a software

system, are rarely the same individuals who

originally designed and implemented the system.

Even if the programmers remain with the same

company, they are transferred to other projects. Their

knowledge about the design of the system is lost –

unless that knowledge is documented in some

fashion. If the design knowledge is documented such

that it is machine-readable, then intelligent programs

can be built that use that design knowledge to assist

the programmers who must diagnose or evolve the

software.

10. Future Directions

The author has developed a knowledge-editing

tool for specifying the design knowledge for a

system. The editor exports the design knowledge

either as an XML file or as a CLIPS4 file of deffacts

statements. An embedded CLIPS expert system acts

as a diagnostic assistant to a user who is debugging a

software fault in the design. The expert system reads

the design knowledge file, queries the user for initial

symptoms and guides the user to the area of the

design that is most likely causing the fault.

The knowledge editor needs to be enhanced with a

dialog generation module. This module will contain

domain-specific rules. These rules provide two

functions: a) initiate question/answer sessions with a

program designer for the purpose of acquiring the

design knowledge, and b) implement model

constraints that check for the existence of

inconsistent or incomplete design knowledge.

The diagnostic assistant needs to be embedded

within a graphical interface. The current system is

command-line driven. The future system will display

4 The C Language Integrated Production System (CLIPS) is an

expert system shell. Originally developed by NASA in 1985, the
current system is maintained as public domain software.

sections of the design model graphically while

guiding the user through the diagnostic task.

Although the initial prototypes require a Microsoft

OS platform, an objective for future work is platform

independence. Therefore, all future work will be done

with ANSI C++ and Tcl.

11. References

[1] B. Chandrasekaran, J.R. Josephson, Representing

Function as Effect, AAAI-96 Workshop on Modeling and

Reasoning about Function, Portland, OR, August 1996.

[2] B. Chandrasekaran, Diagrammatic Representation and

Reasoning: Some Distinctions, AAAI Fall 97 Symposium

Series, Diagrammatic Reasoning, Boston, MA, 1997.

[3] B. Chandrasekaran, J.R. Josephson, V.R. Benjamins,

Ontology of Tasks and Methods, Proceedings of KAW

’98, Eleventh Workshop on Knowledge Acquisition,

Modeling and Management, Banff, Alberta, Canada,

April 18-23, 1998.

[4] B. Chandrasekaran, J.R. Josephson, Function in Device

Representation, to appear in Journal of Engineering and

Computers, Special Issue on Computer Aided

Engineering.

[5] D. Dodson, 3D Aids Cooperation with Diagrams that

Think, ‘Thinking with Diagrams’ Colloquim, IEE,

London, Jan. 18, 1995.

[6] P.E. Johnson, D. Volovik, I.A. Zualkernan, C.E.

Matthews, Design Knowledge for Discovering

Troubleshooting Heuristics, Proceedings of the IASTED

International Symposium on Expert Systems Theory &

Applications, June 26-28, 1989, Zurich, Switzerland.

[7] H.J. Kook, G.S. Novak, Representation of Models for

Expert Problem Solving in Physics, IEEE Transactions

on Knowledge and Data Engineering, vol.2, no. 1 (March

1991), pp. 48-54.

[8] C.E. Matthews, Effect of Source Code Changes upon

a Program’s Design Model, internal paper, 2001.

[9] G.S. Novak, Interactions of Abstractions in

Programming, Lecture Notes in Artificial Intelligence,

vol. 1864, pp. 185-201, Springer-Verlag, 2000.

[10] D. Volovik, I.A. Zualkernan, P.E. Johnson, C.E.

Matthews, A Design Based Approach to Constructing

Computational Solutions to Diagnostic Problems,

Proceedings of the National Conference on Artificial

Intelligence, July 29 - August 3, 1990, Boston,

Massachusetts.

