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Abstract 
 

This paper examines the role of design knowledge 

in the software life cycle. How is knowledge about a 

program design affected by changes to the source 

code? How can program design knowledge be used 

by a diagnostic system to identify failing software 

components? Which attributes of design knowledge 

are relevant for modeling in a design repository? 

 

This paper addresses these questions with respect 

to an actual system that was developed to investigate 

the acquisition, capture, and representation of design 

knowledge for commercial software designs. Existing 

components of the system include a central repository 

for the program design model, a knowledge 

acquisition module for capturing functional and 

design specifications and a rule-based diagnostic 

component for isolating software faults.  

 

Keywords: Design Modeling, Diagnostic Systems, 

Knowledge Acquisition 

 

1. Introduction 

 

Software developers have responsibilities that 

extend beyond the act of writing some set of machine 

interpretable instructions that represent the 

implementation of a computer program. In addition 

to program development, the software lifecycle for 

any non-trivial computer application should also 

include the specification and documentation of the 

program requirements, the documentation of the 

functional specification (which is the satisfaction of 

the requirement specification), the documentation of 

the program internal design, and the specification of 

application or acceptance tests. This paper focuses 

upon the representation of the program internal 

design in machine-readable form. Although the 

common use for design documentation is to preserve 

the design knowledge for the purpose of transferring 

that knowledge from one human being to another, 

there is value in representing the design knowledge in 

machine-readable form. If machine-readable design 

knowledge exists, intelligent tools can use that 

knowledge to assist humans with maintenance and 

diagnostic tasks. 

 

Current research into diagrammatic representation 

and reasoning is an active field of investigation. This 

paper explores the application of some of the 

techniques from diagrammatic reasoning research to 

the design of intelligent tools for developing 

commercial software products. Specifically, this 

paper describes the objectives and architecture for a 

rule-based expert system that can assist a user in 

diagnosing faults within software applications. The 

value of machine-assisted maintenance can be 

significant if (or when) the attributes of the human-

centric processes are prohibitively expensive or 

inherently unreliable. 

 

2. Historical Beliefs 

 

A common belief within the commercial software 

community is that the act of fault isolation and 

diagnosis is, inherently, a human ability. It is an art 

that is enhanced with experience and can be taught to 

new apprentices into the field. During the initial 

period of research and development of expert 

systems, early investigators also concluded that 

software diagnosis was not a practical objective for 

expert systems for a number of reasons. 

 

Belief 1: Software faults are all unique. Once a 

software defect is fixed, it is gone. Therefore most 

diagnostic knowledge has a limited lifespan. Once a 

defect is fixed, the unique set of deductive actions 

that identified that defect is no longer needed.  

 

Belief 2: Code changes are design changes. Each 

code change requires an update to the diagnostic rule 

base in order to maintain accuracy. 

 



Belief 3: The cost needed to create a reliable 

diagnostic knowledge base is prohibitively expensive 

in time and resource. 

 

3. Fault vs. Diagnosis 

 

A software fault (or defect) is an artifact that 

exists within the design or within the implementation 

of the design. The programmer views a software fault 

as a specific set of source code lines. If the source 

code lines change, the fault changes – it disappears or 

becomes a different fault. Therefore, one could say 

that all software faults are defined as a specific 

representation of source code. (If the fault is missing 

functionality, then the fault is a missing 

representation of source code.) Therefore, software 

faults are unique. 

 

For example, consider the following sequence of 

Pascal code. The function FormatXmlStr is 

supposed to search a given string for all occurrences 

of the ‘&’ character, replace each occurrence with the 

character string ‘&amp;’, and return the resultant 

string. However, an error exists in the first line within 

the while code block.  

 
function FormatXmlStr(sIn : string) : 

    string; 

var 

  idx : Integer; 

  src : string; 

 

begin 

  // 

  //  Search for the & character. 

  // 

  Result:=''; 

  src:=sIn; 

  idx:=Pos('&', src); 

  while (0 < idx) do 

  begin 

    //  The following line is  

    //  incorrect. 

    Result:=Result +  

            copy(src, 1, idx) +  

            '&amp;'; 

    src:=copy(src, idx+1, length(src)-  

         idx); 

    idx:=Pos('&', src); 

  end; 

  Result:=Result + src; 

end; 

 

 

The design knowledge that function 

FormatXmlStr represents could be stated as an 

assertion:  
FormatXmlStr  

    has_intention  

        replace_&_in_string; 

 

 

This code would translate the input string ‘s & t’ 

into the corresponding string  

‘s &&amp;  t’ which is incorrect behavior. The code 

will work correctly by replacing the first line of the 

while block with: 

 
Result:=Result +  

        copy(src, 1, idx-1) +  

        '&amp;'; 

 

This is only one of the possible source code 

changes that could correct the fault. In all cases 

correcting this line of source code removes the fault 

without requiring any update or correction to the 

design knowledge for the function 

FormatXmlString. The design assertion for 

FormatXmlString was true before the source code 

was changed, and it remains true after the source 

code was changed. Because this particular software 

fault relied upon the specific line that was in error, 

this fault was unique to the source code before the 

correction occurred.  

 

On the other hand, software diagnosis can be 

viewed as a procedure. In many cases the process of 

diagnosis is the process of recognizing when a given 

pattern or sequence of events is incorrect. Diagnosis 

does not explicitly depend upon the particular source 

code under examination. Diagnostic rules or 

procedures can be generically applicable to different 

faults and source code representations. Diagnostic 

procedures can also become more efficient when they 

use design-specific knowledge, but this type of 

knowledge is not absolutely necessary. Therefore, 

software diagnosis is not unique.  

 

Consider the following diagnostic rule: 

 



(defrule r-1 "Diagnostic rule 1"  

  (funcObj (name ?func)  

           (has_intention  

                "replace_&_in_string")  

           (inputStr "s & t")  

           not (outputStr "s &amp; t")) 

  => 

  (printout t  

      "Function: " ?sub " is failing. "  

      crlf) 

) 

 

 

This rule could identify that FormatXmlString 

has a fault by using the previous assertion of design 

knowledge about FormatXmlString. This diagnostic 

rule does not identify which line in the function is 

faulty, but it doesn’t necessarily need to do so. By 

identifying which code segment potentially contains 

the fault, the rule focuses the programmer’s attention 

within the appropriate area of the program.  

 

Multiple faults within the same area of the design 

can use the same design-specific diagnostic reasoning 

to identify the different faults. The diagnostic 

reasoning procedures search for program specific 

patterns that occur repeatedly for different faults. 

 

4. Code Changes vs. Design Changes 

 

One of the important properties of diagrammatic 

representations or models is that they represent 

abstractions, i.e., they abstract out some of the 

information and represent other information. [2] 

Thus, the nature of an abstraction is that it differs in 

some fashion from the thing that it abstracts. 

Therefore, a change to the program code does not 

necessarily imply the need for a corresponding 

change to the program code’s abstraction, i.e., the 

design model. As illustrated in the previous example, 

changing the defective line of source code did not 

affect the assertion about the program design for the 

function FormatXmlString. In reality, most code 

changes do not affect the design model.  

 

In a previous study, the author analyzed four years 

of source code changes to an existing commercial 

software application. [8] The conclusion from this 

study was that the majority of source code changes 

have no effect upon the representation of the design 

model. 

 

5. Knowledge Capture Cost 

 

The belief that the cost to create a reliable 

diagnostic knowledge base is prohibitively expensive 

is based upon two presumptions: (a) the diagnostic 

knowledge can only be created by the expenditure of 

additional developer time (a scarce resource) and (b) 

the minimum amount of time that is necessary to 

represent any useful diagnostic knowledge is 

significantly large in comparison to the amount of 

time that is available.  

 

An essential component for any toolset that uses 

design knowledge is a knowledge acquisition module 

that can assist with the task of knowledge capture and 

representation. The objective of the knowledge 

acquisition module is to reduce the knowledge 

capture resource cost. One way that the acquisition 

module can reduce this cost is to build or to infer 

knowledge automatically from existing artifacts of 

the design process.  

 

As an example, consider the design object model 

for a software program. The object model is an 

abstraction of the program implementation, it is a 

normal by-product from most programming projects, 

and it is design knowledge. Thus, the appropriate 

toolset can infer design knowledge directly from the 

object model. If the object model exists in a file, an 

import utility can read and translate the model into 

the knowledge representation schema. 

 

In the event that an import utility for the model 

file cannot be created (e.g. the modeling utility uses a 

proprietary file format), the knowledge acquisition 

tool could still reduce the cost for capturing the 

model knowledge by presenting the designer with 

some simple question/answer sessions about the 

model. 

 

6. Design Knowledge and Diagnostic 

Knowledge 

 

The various roles that design knowledge and 

models perform within engineering and programming 

activities is studied widely. Chandrasekaran has 

defined a Functional Representation framework for 

describing objects, properties and causal relations. [1] 

[4] He argues that a precise language is necessary for 

describing objects, properties and causal 

relationships. “When systems fail, reasoning about 

how to fix them involves reasoning about 



malfunctions. When designers are designing, they 

look for components that can achieve certain 

functions. Predicting how systems would behave 

under various conditions of use or abuse also often 

requires knowing what the functions of the device 

are.”1 Whether or not a formal language is necessary 

in order to capture “all” functionality and intent for 

an object, this paper presents evidence that the 

representation of at least some of the functionality for 

an object allows some automatic inference of 

diagnostic knowledge.  

 

Novak asserts that expertise in solving problems is 

characterized by the ability to set up or to represent a 

problem. [7] In addition, he uses models of abstract 

software components to investigate the task of 

automatic program generation. [9] “We argue that 

real programs are based on the use of multiple views 

of data, and indeed, that multiple views of actual 

objects as different kinds of abstractions are common 

in design problems of all kinds.”2 This paper 

contends that it is possible to represent the different 

abstractions to which Novak refers as part of the 

design model. Even if the design model fails to 

encode all of the different abstractions for an object, 

the features that are encoded are available for 

diagnostic use.  

 

In all of these cases, design knowledge or models 

are the essential component to studying how objects 

and devices interact in complex systems. The 

representation of knowledge identifies the constraints 

that define the interactions. This paper asserts that 

similar constraints are identified and represented that 

aid in diagnostic tasks for software faults.  

 

7. Program Modeling 

 

It is fairly easy to conceive of a knowledge base in 

which the rules for diagnosing faults are customized 

and tightly coupled to the particular device/program 

that is being analyzed. Essentially, most model-based 

reasoning systems take this approach. The drawback 

is the direct dependence of the diagnostic rules upon 

the device model.  

 

An alternative approach is to identify meta-rules 

that are generically applicable to the problem 

domain. When the design-specific knowledge is 

added to the knowledge base, the interactions 

                                                           
1 [1] p. 1. 
2 [9] p. 9. 

between the design-specific knowledge and the meta-

rules produce a diagnostic knowledge base for the 

application. Obviously, the critical aspect of this 

approach is the identification of appropriate meta-

rules. If the rules are too generic, then it is difficult to 

achieve good diagnostic performance. If the rules are 

too specific, then the knowledge base is coupled too 

tightly to a specific design – increasing the difficulty 

in maintaining the knowledge base as the design 

changes and evolves.  

 

A deep and thorough understanding of the 

problem domain must guide and influence the 

definition of the meta-rules. However, the meta-rules 

do not necessarily need to encompass all possible 

aspects of the problem domain or all possible design 

models that could be defined for that problem 

domain. The minimum sufficiency for the meta-rules 

is that they must cover all design modeling constructs 

that are used by the specific design that is being 

modeled. Let us examine some of those constructs.  

 

Subsystem Packaging: A common practice for large 

applications is to modularize and group modules of 

similar features and functions into the same package. 

These packages may be called subsystems, 

components or libraries. The particular term is 

unimportant. The relevant aspect is that the features 

and functions within the package have an inherent 

similarity.  

 

For example, to identify the subsystems within an 

application, use the following description.3 

 
(system  

    (has-name  Coverscan) 

    (has-subsystems   

        (GUI, SDM, AS, RGM, IPC)) 

) 

 

 

Subsystem Message: One of the commercial designs 

that the author studied was a multi-threaded system. 

Each of the thread streams was a separate subsystem, 

and they communicated with each other by sending 

messages to an intra-process controller that queued 

the messages for execution for each thread. Because 

this messaging mechanism was an essential element 

in the design model, the diagnostic rules needed to 

account for it.  

                                                           
3 The sample model representations that appear in this paper are 
representations only. Do not attach much importance to the 

particular syntax of the language. The purpose is to represent the 

intent of the model rather than how to propose any specific 
modeling language.  



 
(subsystem 

    (has-name  SDM) 

    (handles-message   

        (LoadFileMsg,  

         LoadHeaderMsg,  

         GetRegionInfoMsg, 

         SelectForAnalysisMsg)) 

) 

 

 

External Interface API: When a collection of 

functions or classes is packaged into a library, the 

library often publishes its external interface. This 

external interface identifies those functions and 

classes that are available for access by other users.   

 
(library  

    (has-name  libACV)  

    (has-proc   

        (dwACVSetup,  

         dwACVSetCheckValue,  

         dwACVClose)) 

    (has-class (CacvObj, CacvCounter)) 

) 

 

 

Asynchronous Events: Event handling is a common 

requirement for many applications. Almost all GUI-

based applications implicitly handle the common 

windowing events, e.g. mouse actions, screen 

painting, etc. However, some applications need to 

respond to explicit events like serial communication 

I/O operations and program interrupts from special 

purpose hardware equipment. Most likely, the model 

must account for all of the explicit events. The model 

could ignore many of the implicit windowing events. 

However, the model should account for any 

windowing event that initiates any significant 

processing. The decision point for deciding which 

events are important enough to model is left to the 

designer.  

 
(subsystem 

    (has-name  GUI) 

    (handles-event   

        (ReqLoadDesign,  

         ReqAnalyze,  

         ReqLoadRegion)) 

) 

 

 

The objective for the model representation is to 

represent the design model in programmatic form. 

For an object-oriented design, it is possible to 

describe the class hierarchy and the class 

interrelationships. For subsystems or library modules, 

identify the external interface: subsystem messages, 

library APIs, common library routines, etc. Identify 

the mechanisms by which the outside world 

communicates with the subsystem and, in return, how 

it communicates with the outside world.   

 

8. Generic diagnostic rules 

 

The expert systems literature contains a number of 

references to different meta-rules for diagnosing 

faults in complex systems. [6] Some of the simpler 

rules are: 

 

1. Divide and conquer – If you know the 

expected path of reasoning, select a point in 

the middle. If the parameters appear correct 

at the focus point, the problem probably 

occurs later in the reasoning path.  

2. Causal analysis – If you see this, you must 

do that. 

3. Case-based reasoning (lazy inference) – The 

previous time when I saw this, the problem 

was that. 

4. Easter egging – Browse around. Look for 

problems.  

 

 

Another class of meta-rule is known as a Focus of 

Attention Heuristic. [10] The focus of attention rule 

starts with a set of possible faulty components and 

reduces that initial set to a smaller set by the 

elimination of those components that have a low 

probability of occurrence. For example, assume the 

following design assertions: 

 



(subsystem 

    (has-name  SDM) 

    (handles-message   

        (LoadFileMsg,  

         GetRegionInfoMsg)) 

) 

 

(subsystem_message 

    (has-name  LoadFileMsg) 

    (is-implemented-by   

        (ClearGlobalInstanceLists,  

         ssOpenDsnFile, 

         ReadFileInfo)) 

) 

 

(subsystem_message 

    (has-name  GetRegionInfoMsg) 

    (is-implemented-by   

        (HandleGetRegionInfo  

         ssInitSelections,  

         GetDefinedModulesList,  

         copydbpkg,  

         GetStateMachineList,  

         MakeRootObject,  

         SearchForModuleNames,  

         copydbobj,  

         copydbmod)) 

) 

 

 

According to these assertions, the subsystem SDM 

handles two messages – LoadFileMsg and 

GetRegionInfoMsg. These messages are 

implemented by the functions listed in their 

respective is-implemented-by attributes. If no other 

information is available other than the statement that 

the SDM subsystem has a fault someplace, then all of 

the code within that subsystem could be the source 

for the fault. However, if it is known that the fault 

symptoms appear when the subsystem is processing 

the message LoadFileMsg, the user should focus 

attention upon the functions involved in 

implementing LoadFileMsg. There is no claim that 

the fault source will truly be found within this set of 

functions – only that it is most appropriate to focus 

attention upon them until additional data focuses 

attention somewhere else.  

 

9. Conclusions 

 

Two significant benefits occur if the design 

knowledge for a software system is available in 

machine-readable form. First, large software systems 

are, by their nature, extremely complex. As systems 

grow in complexity, the number of possible 

interactions between the different parts of the system 

tends to grow, also. After some point it becomes 

extremely difficult for anyone to understand and to 

manage the complexity of the software without 

assistance. Paper documents and class diagrams 

provide some assistance, but the ability to navigate 

the actual software by encoding the design 

knowledge should provide significantly better results.  

 

Second, a characteristic of the software industry 

is: the individuals who are responsible for 

diagnosing, maintaining, and extending a software 

system, are rarely the same individuals who 

originally designed and implemented the system. 

Even if the programmers remain with the same 

company, they are transferred to other projects. Their 

knowledge about the design of the system is lost – 

unless that knowledge is documented in some 

fashion. If the design knowledge is documented such 

that it is machine-readable, then intelligent programs 

can be built that use that design knowledge to assist 

the programmers who must diagnose or evolve the 

software.  

 

10. Future Directions 

 

The author has developed a knowledge-editing 

tool for specifying the design knowledge for a 

system. The editor exports the design knowledge 

either as an XML file or as a CLIPS4 file of deffacts 

statements. An embedded CLIPS expert system acts 

as a diagnostic assistant to a user who is debugging a 

software fault in the design. The expert system reads 

the design knowledge file, queries the user for initial 

symptoms and guides the user to the area of the 

design that is most likely causing the fault.  

 

The knowledge editor needs to be enhanced with a 

dialog generation module. This module will contain 

domain-specific rules. These rules provide two 

functions: a) initiate question/answer sessions with a 

program designer for the purpose of acquiring the 

design knowledge, and b) implement model 

constraints that check for the existence of 

inconsistent or incomplete design knowledge.  

 

The diagnostic assistant needs to be embedded 

within a graphical interface. The current system is 

command-line driven. The future system will display 

                                                           
4 The C Language Integrated Production System (CLIPS) is an 

expert system shell. Originally developed by NASA in 1985, the 
current system is maintained as public domain software. 



sections of the design model graphically while 

guiding the user through the diagnostic task. 

 

Although the initial prototypes require a Microsoft 

OS platform, an objective for future work is platform 

independence. Therefore, all future work will be done 

with ANSI C++ and Tcl.  
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