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ABSTRACT 

Computer software is pervasive in today’s society. The rate at which new versions of computer software 
products are released is phenomenal when compared to the release rate of new products in traditional industries 
such as aircraft building. This rapid rate of change can partially explain why most certifications in the software 
industry are generic as opposed to those in the aircraft-building industry where engineers and technicians are 
certified to work on a specific aircraft. For example, a software engineer may be certified on a database 
management system, but not on a specific implementation based on the database management system. Hence, 
software engineers are allowed to make critical changes to specific designs for the next release of a software 
product with little formal assessment of their understanding of the design. This paper presents a system that 
automatically generates just-in-time online assessments for judging a software engineer’s comprehension of 
artifacts representing software designs. The assessments thus generated are compliant with the IMS-QTI 2.1 
standard. The system is based on the AXIS web-services architecture and provides a priori statistical estimates 
of effectiveness of each individually generated assessment.  
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Introduction 
 
New versions of software products are released every few months. Given the mission-critical nature of software 
products today, it is reasonable to expect that software engineers should be “certified” on a software design to ensure 
that they understand the design before being allowed to change it for the next release. However, this is often not the 
case. Most software design methodologies employ a “tell and pray” pedagogy in which the engineers are given the 
software product along with its design documents and are expected to pick up the design as they work; the engineers 
are almost never assessed to ensure that they understand the design.  
 
In many situations, however, engineers are provided with visualization tools to help them understand software 
designs (Hundausen, Douglas & Stasko, 2002; Stasko, Dominique, Brown, & Price, 1988). These tools range from 
automatic help-file generators at the code level to browsers at the design and specification level (Confora, Cimitile, 
Carlini, & De Lucia, 1998; Hendrix, Cross, & Maghsoodloo, 2002; Lanza & Ducasse, 2003; Lehman, 1989; Tonella, 
2003; Luqi, Berzins, & Qiao, 2004). While these tools help an engineer explore existing designs, they provide little 
guidance on how well an engineer understands a design.  
 
Similarly, inspection and walkthrough methods (Anderson, Reps, & Teittelbaum, 1989; Brykczynski, 1999; Miller & 
Yin, 2004; Traore & Aredo, 2004) are often used as collaborative and reflective design exercises in which engineers 
are forced to articulate, reflect, and defend their software designs. Inspection and walkthrough methods are effective 
in ensuring quality of new software designs. Like visual tools, however, inspection and walkthrough methods also 
offer little in establishing how well an engineer understands a particular design in any meaningful way.  
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Using formal methods is another approach to understanding properties of software designs (Apvrille, Courtiat, Lohr, 
& Saqui-Sannes, 2004; Eshuis & Wieringa, 2004. However, like other approaches mentioned earlier, these methods 
also fail to provide an objective assessment of an engineer’s level of understanding of a design.  
 
Obviously, it is possible to manually construct exams to judge an engineer’s level of understanding of a software 
design. However, every few months, typical computer software products release a newer version. Therefore, such an 
approach is not cost-effective: exams would need to be rewritten every time the design changes.  
 
This paper presents an automated approach to judging a software engineer’s level of comprehension of artifacts 
created during software design. This approach is cost-effective because online assessments to determine an 
engineer’s level of understanding of a software design are automatically generated and graded; every time the design 
changes, assessments can be automatically re-generated.  
 
The paper first presents a framework to formally define the problem and outline an approach. The framework is 
followed by a description of architecture and a prototype system based on this approach. Examples of automatically 
generated assessments are provided next. The paper ends with a discussion of limitations and conclusions.  
 
 
Framework 
 
The primary objective of this research is to automatically generate assessments for checking a software engineer’s 
level of understanding of software design artifacts or models. For example, the Unified Modeling Language (UML) 
(OMG-UML, 2003) currently supports thirteen such models. Each design model is typically an approximation of 
some aspect of the software or the world. The task of checking a model against the world is typically called 
validation. Similarly, the task of checking a model for internal consistency and completeness is called verification. 
The goal of this research is neither validation nor verification. Rather, it is to determine how closely the “mental 
model” or adaptation (Simon, 1983) of a software engineer matches the actual design model. Hence, if M is a design 
model, the purpose of an assessment is to determine how closely M', the understanding of a software engineer, 
matches the actual model M. In other words, the goal of assessment is to approximate (M – M') or the degree to 
which the understanding of a software engineer differs from the actual design model.  
 
The meaning of a software engineer’s understanding of a model, M, depends on an “authentic” context of its use 
(Brown, Collins, & Duguid, 1989; Lave & Chaiklin, 1993). This research assumes that this understanding is 
inherently related to the use of model M in the context of design. For example, if a model is used to emphasize 
logical gaps in reasoning, an understanding of this model consists of a software engineer’s ability to perform the task 
of finding such logical gaps. More generally, an understanding of a particular model M is related to a set of related 
design tasks. 
 
The framework has two components. The first component describes how to generate assessments from a design 
model, and the second describes how to determine the effectiveness of such automatically generated assessments.  
 
 
Generation of assessments 
 
On surface, the problem of automatic generation of assessments seems related to the problem of automatically 
generating test cases from design models (Andrews, France, Ghosh, & Craig, 2003; Bigot et al., 2004; Chow, 1978; 
Nebut, Fleurey, Le Traon, & Jézéquel, 2006). However, unlike test cases, which are used for validation and 
verification, assessments check the depth of an engineer’s comprehension of a design model. Therefore, this 
framework follows Bloom’s (1956) pedagogical categories as the foundation for generating assessments. Bloom 
provides generic categories of levels of learning for cognitive tasks, such as knowledge, comprehension, application, 
analysis, synthesis, and evaluation. Each successive level of learning requires a higher level of understanding. 
Roughly, each question in an assessment is generated using some of the following action verbs corresponding to 
each category:  

 Knowledge: arrange, define, duplicate, label, list, memorize, name, order, recognize, relate, recall, repeat, 
reproduce, or state. 
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 Comprehension: classify, describe, discuss, explain, express, identify, indicate, locate, recognize report, 
restate, review, select, or translate. 

 Application: apply, demonstrate, dramatize, employ, illustrate, interpret, operate, practice, schedule, sketch, 
solve, transcribe, use, or write. 

 Analysis: analyze, calculate, categorize, compare, contrast, correlate, criticize, diagram, differentiate, 
discriminate, distinguish, examine, experiment, prove, question, or test. 

 Synthesis: arrange, assemble, collect, compose, construct, create, design, develop, formulate, integrate, 
manage, organize, plan, prepare, propose, or set up. 

 Evaluation: appraise, argue, assess, attach, choose, defend, estimate, evaluate, judge, predict, rate, select, 
support, or value. 

 
Therefore, for a particular design model, an application of Bloom’s categories leads to the generation of assessment 
questions at each of the six levels of understanding.  
 
This research is currently focused on automatic generation of assessments for activity diagrams. Activity diagrams 
are a type of model commonly used in software design. An activity diagram for making a beverage is shown in 
Figure 1. As Figure 1 shows, an activity diagram typically captures control flow in a situation. For example, Figure 1 
shows that a coffee machine has to be turned on before brewing coffee. An activity diagram also captures 
coordination or syncing points when activities are allowed to occur concurrently until some point in time. For 
example, in Figure 1, putting coffee in filter, adding water, and getting cups can happen concurrently. However, all 
three activities must finish before coffee can be poured. This condition is indicated by the horizontal bar in the 
figure. Finally, activity diagrams also include “guards” or conditions such as “coffee not found” that lead to different 
branching based on decision points indicated by the diamond symbol. 
 

 
Figure 1. A sample activity diagram for drinking coffee (Adapted from OMG-UML, 2003) 
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The activity diagram shown in Figure 1 will now be used to illustrate how assessments at various levels of Bloom’s 
hierarchy can be generated from an arbitrary activity diagram. 
 
One type of knowledge-level assessment is a simple recall. For example, for the activity diagram shown in Figure 1, 
a recall-based assessment consists of asking an engineer to indicate if “pour coffee” was one of the activities in the 
diagram. Another variation may be to ask a software engineer to list the various activities in the diagram.  
 
An assessment at the comprehension level is constructed by asking an engineer to describe and explain what is in the 
activity diagram. For example, a software engineer may be asked if coffee can be poured (i.e., “pour coffee”) without 
both “brew coffee” and “get cups” finishing first. This information is embedded in the activity diagram via the 
horizontal bar (see Figure 1). As this example illustrates, to answer such questions correctly, an engineer needs to 
understand how to interpret the relationships among the various components of an activity diagram.  
 
An assessment at the application level is constructed by asking a software engineer to apply what she knows from 
this activity diagram. For example, a software engineer may be asked to produce a sequence of activities (if any) that 
start from the “find beverage” activity and ultimately lead to the “pour coffee” activity, under the condition that no 
coffee was found. In order to perform correctly for this assessment, a software engineer needs to understand how to 
apply conditions to generate a specific path through the activity diagram.  
 
An assessment at the analysis level consists of the ability to use facts and inferences to understand properties of the 
activity diagram. For example, a software engineer may be asked to describe conditions (if any) under which “get 
cola” and “get cups” happen concurrently. A successful performance of this assessment requires that the engineer be 
able to calculate the conditions under which specific paths can be taken concurrently in the activity diagram.  
 
An assessment at the synthesis level requires building a structure or pattern from diverse elements to create new 
meaning in the activity diagram. For example, a software engineer may be asked to alter the activity diagram to 
enable the use of cups for drinking cola as well. A successful performance at this level requires the engineer to have 
the ability to successfully modify the existing activity diagram to satisfy additional functionality or constraints.  
 
Finally, an assessment at the evaluation level requires judgment about the value of ideas or materials included in the 
activity diagram. For example, one may ask the software engineer if the activity diagram handles exceptional 
conditions such as the coffee machine not turning on appropriately. In general, various properties of the activity 
diagram such as usability, reliability, and security can be assessed at this level.  
 
In summary, the general framework for generating assessments is based on Bloom’s taxonomy. The description and 
guide words at each level are used to create specific heuristics that generate questions for an arbitrary activity 
diagram. A typical assessment consists of a number of questions from each level of understanding.  
 
How many questions are sufficient to ensure that an engineer’s understanding has been judged adequately? This 
issue is addressed by the creation of an assessment risk profile, described next. 
 
 
Creation of assessment risk profile 
 
The purpose of an assessment risk profile is to provide a reasonable measure of “goodness” of an automatically 
generated assessment for a particular activity diagram. More specifically, the purpose of an assessment risk profile is 
to provide an estimate of the relationship between the size of an assessment (i.e., the number of questions being 
asked) and the probability that an assessment of this size will catch or uncover particular types of misunderstandings.  
 
Critical to the creation of a risk profile is the concept of a misunderstanding. Misunderstandings are commonly 
occurring differences between the actual model (e.g., the activity diagram) and how those differences are understood 
by a software engineer. For example, in the activity diagram shown in Figure 1, a software engineer may have the 
misunderstanding that brewing coffee comes before turning on the machine. Another misunderstanding may be that 
“pour coffee” does not exist at all. This research uses the Hazard Operators (HAZOP) Kim, Clark, & McDermid, 
1999) scheme to generate classes of misunderstandings for activity diagrams, as shown in Table 1.  
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Each row in Table 1 represents a class of misunderstandings in an activity diagram. Each class of misunderstanding 
can have different manifestations. Table 2 shows different manifestations for each class of misunderstanding in a 
graphical fashion. The first column in Table 2 shows a manifestation of misunderstanding. The second column in 
Table 2 shows an example of a portion of an activity diagram. The third column shows how the portion of an activity 
diagram in the second column is misunderstood. For example, as Table 1 shows, the AS_WELL_AS class represents 
those misunderstandings that maintain the original intent of the activity diagram but adds additional spurious 
behaviors. Two manifestations of such misunderstandings (additional loop edge and additional reverse edge without 
removing the original edge) are shown graphically in the first and second rows of Table 2. The first row of Table 2 
further shows an example of how a simple three-node activity diagram can be misunderstood by adding an additional 
loop edge (i.e., to node C).  
 

Table 1. HAZOP classification for misunderstandings in an activity diagram 
Class Nature of misunderstanding Manifestations of misunderstanding 

AS_WELL_AS The specific intent of the activity 
diagram is maintained but the 
misunderstanding yields additional 
results. 

1. Additional loop edge 
2. Additional reverse edge without removing the 

original edge 

PART_OF Only some of the intention in the 
activity diagram is achieved. 

3. Missing an edge 
4. Missing an activity (and reconnected edges) 

REVERSE Reverse flow — flow in the activity 
diagram is in the wrong direction. 

5. Reversed edge 
6. Two consecutive activities swapped 

OTHER_THAN A result other than initial intention is 
achieved while maintaining the 
structure of the activity diagram. 

7. One activity substituted for another 
8. An additional activity between two activities 

 
 
 
Another general class of misunderstandings in Table 1 is PART_OF. Manifestations of this class of 
misunderstandings are missing edges or activities: the software engineer believes that the activity does not include a 
specific activity or an edge. A third class of misunderstandings in Table 1 is represented by the REVERSE class. In 
the case of edges, the REVERSE class translates into the belief by a software engineer that an edge is reversed. In the 
case of an activity, REVERSE misunderstanding may exist if the engineer believes that two contiguous activities are 
actually swapped. Finally, the OTHER_THAN misunderstandings are those cases in which the original structure of 
the activity diagram is believed to be about the same but additional content is substituted. For example, an engineer 
may have the right structure of the activity diagram, but may substitute or confuse one activity for another. A more 
extreme case may be the inclusion of an additional activity between two existing activities.  
 
The “goodness” of an automatically generated assessment can be judged by the assessment’s ability to catch a 
particular type of misunderstanding. This is done by using a variant of mutation testing (Boland, Singh, & Cukic, 
2003; DeMillo, Lipton, & Sayward, 1978; Howden, 1982). Mutation testing has been used to evaluate test case suites 
(i.e., a set of test cases). A mutant (or variation) of a computer program is generated by deliberately applying a 
mutation operator to the program. Each mutation operator represents a fault (e.g., a misspelled variable). The 
mutated program is then tested using the test suite. If none of the test cases in the test suite fail, then the test suite has 
failed to kill the mutant. The failure to kill the mutant means that the specific test suite is not suitable for catching the 
fault that was introduced. 
 
Since an assessment consists of a set of questions for a software engineer, the assessment acts much like a test suite. 
Similarly, the activity diagram is analogous to a computer program, and a misunderstanding is analogous to a fault. 
Therefore, a mechanism similar to mutation testing can be used to evaluate the effectiveness of the assessments thus 
generated.  
 
Let Aa ∈  represent an arbitrary activity diagram. A mutation operator M∈μ  is applied to the activity diagram a  

to generates a set of mutated activity diagrams 'A  where { )}('|'' aaaA μ←= . The list of mutation operators (i.e., 
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M ) is based on the misunderstandings shown in Table 2. For example, one mutation operator adds an additional 
loop edge to an activity diagram, another mutation operator reverses an edge, and so on.  
 
Let { )}(| aBAGqqQ ←= represent an assessment or a set of automatically generated questions using the approach 
described in the previous section. (The approach is called Bloom’s assessment generator [BAG].) Each Qqε  
represents one question for the software engineer based on Bloom’s taxonomy.  
 
Finally, for a particular Qqε , Aa ∈ and '' Aa ∈ , let )',,( aaqORACLE  represent an oracle that returns true if the 
question Qq ∈  produces the same answer for both a  and 'a , and false if it does not. For example, suppose the 
question “Is ‘add water’ an activity in the activity diagram?” was generated from the activity diagram shown in 
Figure 1. The correct answer for this question, based on the original activity diagram, is obviously “yes.” However, 
suppose a misunderstanding were introduced in the original activity diagram by removing the activity “add water.” 
This is done by applying the mutation operator (4) from Table 2. The resulting mutated activity diagram would be 
identical to the original diagram except that the “add water” activity and associated edges would be missing. If one 
were to answer the original question using the mutated diagram, the answer would be “no.” This means that the 
oracle answers false in this case because the answer to the question in the original and the mutated diagrams are 
different. A false answer from the oracle means that a misunderstanding was caught by the question.  
 

Table 2. Example manifestations of misunderstandings in an activity diagram 
Manifestation Actual Misunderstood as 

1. Additional loop edge 

2. Additional reverse edge 
without removing the original 
edge 

 
3. Missing an edge 

A

B C

4. Missing an activity and 
reconnected edges A

B D

5. Reversed edge 
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6. Two consecutive activities 
swapped 

 
7. One activity substituted for 
another 

8. Additional activity between 
two activities 

 
 
An algorithm to generate a risk profile for a specific activity diagram Aa ∈  takes a set P = {a, M, k, n} as input, in 
which k  represents the number of questions in the assessment being generated, n  represents the number of 
replication representing statistical accuracy, and M  is a set of mutation operators. The algorithm carries out 
binomial experiments that produce an estimated probability that an assessment with k  questions generated from 
activity diagram a  will catch a particular type of misunderstanding. An outline of the algorithm for the system is 
shown below. 
  
Given P = {a, M, k, n} 
For each M∈μ  do // for all mutation operators 

{ )}('|'' aaaA μ←=  // generate the set of mutated activity diagrams for a  
For each '' Aa ∈  do // for all mutations of a  

1)(a' ←success  
For ni   ,1= do // repeat the experiment n times 
// randomly generate an assessment with k  questions 

{ )}(| aBAGqqQ ←=  where kQ =  
For each Qqε do 
If )),',(( trueqaaORACLE ≡  // the mutated and original gave 
// the same answer 
then 0)'( ←asuccess  // one misunderstanding was not caught 

( )'/
'

)( ),,( An
An

isuccesskap ×∑
×

← ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ  

 
The algorithm returns the probability ),,( kap μ , that for a specific activity diagram a , an assessment with k  
questions will catch a particular misunderstanding injected by a mutation operator μ . Since each application of the 
oracle represents a binomial experiment, the statistical bounds on the probability p are given by  
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( )'/)1(2/ Anppzp ×−± α
  

  
where z represents the normalized score while α represents the Type I error rate.  
 
In summary, the risk profile for each activity diagram is generated by introducing known misunderstandings 
repeatedly in the same activity diagram, randomly generating assessments of a particular size and determining how 
many of these assessments are able to catch the introduced misunderstandings. This procedure leads to a statistical 
profile of how well the technique works for a specific activity diagram in terms of unearthing various types of 
misunderstandings.  
 
 
System architecture 
 
A prototype system based on the framework presented earlier was constructed to automatically generate online 
assessments from arbitrary activity diagrams. As shown in Figure 2, the system architecture is based on the Apache 
Axis framework for building web services (Axis, 2008). The system relies on Apache Tomcat (Tomcat, 2008) and 
uses MySQL (MySQL, 2008) as the back-end database. The system has one primary server that provides assessment 
generation services by optionally using distributed clients to calculate the risk profile for an arbitrary activity 
diagram. The assessment generation is not computationally expensive because it relies on known graph algorithms 
and pattern matching. The calculation of risk profile, however, is computationally expensive because for each profile 
all possible mutations of a particular type (say, reverse edge) are applied to an activity diagram, and this process is 
replicated depending on the statistical accuracy desired. Distributed clients essentially help tackle this portion of the 
computational complexity. The server supports two types of clients. Submit clients (SC) are used to submit activity 
diagrams, and processing clients (PC) are used to help generate the risk profile for a particular activity diagram. Each 
of these is described below.  
 
 
Server 
 
The server supports two SOAP (Soap, 2008) interfaces. The first interface is a submit activity diagram interface (S). 
This interface allows any SOAP client to submit an activity diagram to generate an assessment. In addition to 
submitting an activity diagram, the client also specifies the number of questions in the assessment (k), the mutation 
operators to be used, and a sample size (n) for the risk profile. The server, in turn, generates and returns an 
assessment and a risk profile to the client. The second interface is a processing client interface (P) that distributes and 
runs mutations for the risk profile and returns the results to the server.  
 

 
Figure 2. System architecture 
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The server has three primary components: the Bloom assessment generator (BAG), the work distribution layer 
(WDL), and the results tabulation layer (RTL). A SOAP client connects to the submit interface (S) of the server to 
provide a job to execute. A typical job consists of an activity diagram in the form of an XMI file (OMG-XMI, 2006), 
the mutation operators to apply, the number of questions in each assessment, and the sample size. The BAG takes the 
XMI file representing an activity diagram as input and generates an assessment for the activity diagram as an XML 
file based on the IMS QTI format (IMS-QTI, 2006). 
 

 
Figure 3. A knowledge-level heuristic generating a multiple-choice question 

 

 
Figure 4. A comprehension-level heuristic for generating a true/false question 
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BAG is implemented using Java, SWI-Prolog (Clocksin & Mellish 1994; SWI-Prolog, 2008), and JPL Java APIs 
(http://sourceforge.net/projects/jpl). BAG consists of a collection of heuristics that are organized according to 
Bloom’s levels. Each level incorporates a number of pedagogical heuristics. From a learning perspective, a software 
engineer needs to learn the sequencing and conditions under which particular activities can occur in an activity 
diagram. This is reflected in most heuristics. These heuristics are encoded as rules in the Prolog programming 
language. Each heuristic is parameterized with respect to the various components of an activity diagram. Figure 3 
shows the pseudo-code for one such heuristic at the knowledge level. This heuristic is able to generate questions that 
ask a software engineer to order a set of activities between two arbitrarily selected activities (ax and ay) for a 
particular activity diagram.  
 
Figure 4 shows an example of a heuristic that generates a true/false question asking the user to select activities that 
can be potentially concurrent. As the figure shows, the heuristic randomly generates both positive (true) and negative 
(false) questions. 
 
Finally, Figure 5 shows an example of a heuristic at the synthesis level. This heuristic taps into a software engineer’s 
ability to effect changes to the existing activity diagram and hence is at the synthesis level. In order to be able to 
answer questions generated from this heuristic, the software engineer needs to work through the consequences of 
changes in the activity diagram. 

 
Generate_t/f_syn_12(activity a) 
{ 
  ax = randomly select an activity from 
      activity diagram a. 
  ay = randomly select an activity that 
      follows activity ax. 
  az = randomly select another activity 
      that follows activity ax. 
 
Generate all paths between ax and az after 
deleting an edge between ax and ay. If there 
is at least one path then correct_answer = 
true. Otherwise, the correct_answer = false.  
 
Generate the QTI 2.1 code for the following 
question template: 
    
“If an edge between activity ax and activity 
ay is deleted, will the user still be able to 
reach activity az?” 
 
   with the correct answer  
   being correct_answer. 
 
}  
Figure 5. A synthesis-level heuristic for generating a true/false question 

 
The WDL takes the activity diagram, the generated assessment, and the sample size representing statistical accuracy 
and splits and assigns various mutation tasks for generating the risk profile to different processing clients. Finally, 
the results tabulation layer (RTL) consolidates the results received from various processing clients.  
 
Once an assessment is generated, the WDL divides and assigns the job to various processing clients to generate the 
risk profile for the job. For example, the sample of jobs submitted to the server shown in Table 3 for two activity 
diagrams will be distributed as tasks to various processing clients as shown in Table 4.  
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Table 3. Sample jobs submitted to the server 
Job M n  k  
1 {1, 2} 100 20 

2 {2, 3} 50 10 

M  is a set of mutation operators 
n  is the number of replication representing statistical accuracy 
k  is the number of questions in the assessment being generated 

 
 

Table 4. Mapping of jobs to tasks 
Task Job μ n  k

1 1 1 50 20 
2 1 1 50 20 
3 1 2 50 20 
4 1 2 50 20 
5 2 2 25 10 
6 2 2 25 10 
7 2 3 25 10 
8 2 3 25 10 

μ is a mutation operator 
n  is the number of replications representing statistical accuracy 
k  is the number of questions in the assessment being generated 

 
 

The server waits for processing clients to attempt connection and assigns a unique identifier to each client. Once the 
client is connected, the server sends the parameters for the task, along with the required files, to the processing client. 
When the client sends back the results for the task it received, the server records these results in its database and sets 
the task to be completed.  
 
 
Submitting clients 
 
Since the server supports the SOAP protocol, clients can be written in any programming language that supports the 
SOAP protocol. These clients connect to the server through the S interface as shown in Figure 2. Figure 6 shows one 
such SOAP client (implemented in Java) that allows the user to select the mutation operators and submit an activity 
diagram. The submitting client is able to watch the progress on its job via a status bar.  
 
 
Processing clients 
 
Client nodes that implement the algorithm described earlier have three layers as shown in Figure 2. These clients 
connect to the server through the processing client (P) interface. The mutation analysis framework layer (MAFL) 
provides services related to creating mutations and applying the ORACLE (OR) to determine the results. In addition, 
each client includes BAG to randomly create an assessment of a particular size (number of questions) while the 
ORACLE determines whether a question yields the same results for the normal and the mutated activity diagrams.  
 
Each processing client initiates communications with the server. When the client has resources, it continuously 
attempts to connect the server in order to receive a unique identifier. Once the connection is established, the client 
requests the task from the server and, upon receiving the job, the client starts mutation testing based on the 
parameters it has received. After completion, the client calls the return result method to give back the results to the 
server. After dispatching the results, the processing client probes the server for any additional tasks to process. The 
MAFL is organized according to the HAZOP classification described earlier. Currently, the MAFL includes all the 
misunderstandings in Table 2 implemented as mutation operators.  
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Figure 6. A sample submit client  

 
Evaluation 
 
The system currently contains 115 rules for generating questions at various levels of the Bloom’s taxonomy. Figures 
7 and 8 show sample questions from an assessment that was automatically generated from the activity diagram 
shown in Figure 1.  
 

 
Figure 7. A knowledge-level sample question for the drink-coffee activity diagram 
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Figure 9 shows how the results of the assessment are automatically scored and presented to a software engineer 
through a commercial learning management system supporting the IMS QTI assessment format. 
 
The risk profile for the drink-coffee activity diagram shown in Figure 1 (labeled Activity B) is shown in Figure 10. 
Figure 10 shows that as the number of questions in an assessment increases, so does the probability of catching each 
type of misunderstanding. However, based on the current set of rules, some misunderstandings are easier to catch 
than others. For example, as Figure 10 shows, the reversed-edge misunderstanding, where an engineer believes that 
an edge is pointing in the wrong direction, is fairly easy to catch because the number of questions in an assessment is 
increased beyond five. On the other hand, misunderstandings such as an additional reversed edge, where an engineer 
believes that an additional reversed edge exists between two activities, are difficult to catch; the probability of 
catching such misunderstandings for this specific activity diagram is less than 30 percent even with an assessment 
containing twenty questions. In addition, as the number of questions is doubled from ten to twenty, the probability of 
catching this misunderstanding only goes up by about 10 percent.  
 

 
Figure 8. A comprehension-level sample question for the drink-coffee activity diagram 

 
 

 
Figure 9. Results of an assessment from the drink-coffee activity diagram 
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Figure 10. Risk profile for the drink-coffee activity diagram 

 
The risk profile for the activity diagram shown in Figure 10 also provides additional useful information. For 
example, if an engineer generates an assessment with ten questions, the risk profile shows that there is about a 50 
percent probability (p = 0.5044 with a 95 percent confidence interval of +/−0.0224) that a misunderstanding like the 
additional loop edge will be missed by the assessment. 
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Figure 11. Risk profile for an activity diagram with eight activities 
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Figure 11 shows the risk profile for another activity diagram (Activity Diagram A) that is much smaller (only eight 
activities) and simpler than the Activity Diagram B. Figure 12 shows that for Activity Diagram A, the additional 
reversed-edge misunderstanding is also the most difficult (lowest probability) to catch. However, the probability of 
catching this misunderstanding with a ten-question assessment is much higher (p = 0.36 with a 95 percent confidence 
interval of +/−0.033) than the probability for Activity Diagram B (p = 0.18 with a 95 percent confidence interval of 
+/−0.017).  
 
Each activity diagram has a unique risk profile that is not necessarily tied to its size. For example, Figure 12 shows 
the risk profile for an activity diagram (Activity Diagram C) with 24 activities. The probability of catching a 
reversed-edge misunderstanding for this activity diagram is actually higher (p = 0.28 with a 95 percent confidence 
interval of +/−0.18) than a smaller activity diagram (Activity Diagram B, for example).  
 
In addition to the results shown above, the system presented in this paper has been successfully tested on one 
hundred arbitrary activity diagrams collected from published sources (mean number of activities/activity diagram = 
15.56, SD = 8.22; mean number of edges/activity diagram = 13.65, SD = 8.26). Risk profiles were also generated for 
these diagrams by varying the size of the assessments from 1 to 20 questions in increments of five questions. Thirty 
Pentium IV machines were used as processing clients. As expected, each activity diagram resulted in a unique risk 
profile.  
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Figure 12. Risk profile for an activity diagram with 24 activities 

 
 
The methodology and the tools presented in this paper were also applied to a portion of a mission-critical software 
system called the Gas Compliance System (or GCS Energy) (GCS, 2008). GCS Energy is an integrated suite of 
software modules designed to assist a natural gas utility with compliance tracking and auditing. In the United States, 
the Department of Transportation’s Office of Pipeline Safety (OPS) mandates periodic inspection, testing, and 
maintenance tasks for gas pipeline systems through DOT Part 192 — Transportation of Natural or Other Gas by 
Pipeline: Minimum Federal Safety Standards. This federal standard requires that pipeline operators perform 
compliance tasks at thousands of sites, covering hundreds of miles. Upon completion, these tasks must be recorded, 
stored, and made available for review in the event of an OPS audit. Failing an audit can result in the leverage of large 
fines against a natural gas utility.  
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Based on principles found in the American Gas Association’s GPTC Guide, GCS Energy’s system manages 
compliance tracking for various facilities within a natural gas utility company. The various subsystem modules that 
track compliance activities include atmospheric corrosion, corrosion tracking, leak survey, leak tracking, pressure 
control stations, exposed pipe exam, pipeline patrol, and valve tracking.  
 
One portion of the valve tracking system manages inspections. Pipeline operators must inspect every installed valve 
within a periodic time frame as determined by the DOT Part 192 regulations. Various valve parameters determine 
not only the inspection frequency but also the inspection questions and whether the questions are mandatory or 
optional. Figure 13 displays some of these parameters in the valve detail window.  
 
The corresponding activity diagram that models the valve inspection functionality for GCS Energy is shown in 
Figure 14.  
 

 
Figure 13. Sample screen for entering valve parameters in GCS 

 
Some of the questions automatically generated by the system described here for the activity diagram shown in Figure 
15 are discussed below. 

 
Q1: Starting from the initial state, can an operator do “Return to 
previous window” without taking the decision ‘valid required attr. 
values’?  

 
The correct answer to this question is “yes.” The software engineer needs to know that an operator can choose to 
cancel the inspection task and return to the previous window. This operation skips any validation checks because the 
user is discarding the inspection task. An incorrect answer to this question exposes a serious lack of understanding on 
the part of the software engineer who does not understand that a user is able to cancel the inspection task and go back 
to the previous window before the required attribute values are validated.  
 

Q2: What necessary action must be performed in order to do “Update 
database”? 
 
A) Record completed task data 
B) Display Message: Required task question not answered 
C) Return to previous window 

 
The correct answer to this question is A. Again, the software engineer needs to know that C cannot occur before A 
and that receiving the error message in B means that the database cannot be updated. If a software engineer fails to 
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answer this question, he does not understand that all inspection questions are answered before the database system is 
updated. In this context, a software engineer who selects C as the possible answer shows a complete lack of 
understanding of the system because returning to the previous window can only be done either if the inspection is 
cancelled or if all the requisite inspection tasks have been completed.  
 

 
Figure 14. An activity diagram for the valve inspection functionality in GCS 

 
Q3: After the condition “completion date < in_service date”, which of 
the following are possible immediate successors? 
 
A) Display Message: Inspection task record cannot be performed prior to 
equipment install date 
B) Update task record with new due and compliance dates 
C) Update database 

 
The correct answer to this question is A; the software engineer needs to know that A is the result if the condition test 
fails. In addition, the software engineer also needs to know that additional questions must be answered before the 
new due and compliance dates can be calculated or the database updated. A software engineer with the requisite 
knowledge of the design also knows that “completion date < in_service date” occurs before these other decision 
nodes. Therefore, A is the only correct answer.  
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The three questions discussed above show that questions generated by the assessment system probe for a deep 
understanding of a software engineer’s knowledge of the software product design, and a failure of such 
understanding can lead to potentially catastrophic consequences. 
 
 
Discussion and limitations 
 
The prototype system constructed shows that it is possible to generate useful assessments automatically from activity 
diagrams. In addition, a unique risk profile is provided for each activity diagram.  
 
As is evident, the assessments at the lower levels of Bloom’s taxonomy are fairly context free and can be derived 
easily from the syntactic structure of activity diagrams. However, since activity diagrams are semi-formal in nature, a 
formal model should lead to a more robust set of questions. As one progresses to higher levels of Bloom’s taxonomy, 
the task dimension also becomes more important in one’s ability to generate the right rules. A model of the task can 
help in the generation of such questions.  
 
The mutation operators used in this research are based on the HAZOP model. Additional operators can be derived 
from bug checklists (Thelin, Runeson, & Wohlin, 2003). Currently, the risk profile assumes a uniform distribution 
while generating the assessment questions. However, once a correspondence between the types of misunderstandings 
and their frequency in a software engineering environment is established, the assessment generation process can 
incorporate this information by increasing the proportion of questions that target frequently occurring 
misunderstandings in a particular environment.  
 
Finally, the results presented in this paper are being extended to include the other twelve models of UML.  
 
 
Conclusion 
 
As designed artifacts like computer software become more complex and life cycles become shorter, the assessment 
techniques of the type presented here will become a necessary part of any design cycle. This paper describes a 
distributed system that automatically generates standards-based, tool-independent, and just-in-time online 
assessments from arbitrary activity diagrams. A key feature of this system is that, in addition to automatically 
generating an online assessment, the system provides a unique a priori risk profile for each activity diagram.  
 
The results presented in this paper are limited to one specific model (i.e., the activity diagram) within one 
methodology (i.e., UML) in the context of one engineering discipline (i.e., software engineering). In addition, most 
assessment heuristics are at lower levels of Bloom’s hierarchy. However, the results presented here have a potential 
application in any branch of engineering that constructs formal or symbolic by-products or artifacts as a natural 
design activity. For example, CAD/CAM systems for mechanical and civil engineering design are obvious 
candidates. Another significant area for application of this approach is process design. Increasingly, businesses’ 
processes are not only being formalized but are in continuous flux as businesses continuously respond to changes in 
their environment. This flux creates a similar problem where the changes in a business’s process are to be conveyed 
to all individuals that play a role or come in contact with the process. Again, rather than showing an individual a 
“picture” of a changed business process, an approach similar to the one presented in this paper can actually generate 
assessments to ensure that process changes have actually been understood.  
 
Using mutation-analysis to generate an a priori estimate of risks associated with a particular assessment is also a 
promising side benefit of this approach. However, the effectiveness of this method relies on the availability of 
information on the types of misunderstandings that typically occur in specific contexts. The approach has the 
potential to be generalized to other disciplines as well. For example, one can imagine a common set of 
misunderstandings of a construction blueprint in the context of civil engineering: a missing door, the wrong type of 
HVAC pipe, etcetera. Once a taxonomy of such misunderstandings is established in a field, it can be used to create 
mutations of an existing design artifact (such as a blueprint) to judge the effectiveness of automatically generated 
assessments.  
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In hindsight, the difficulty of constructing heuristics to generate Bloom’s higher level assessments is not surprising; 
it is difficult enough to construct such assessments by hand. However, in this research it was possible to arrive at 
some rudimentary heuristics at Bloom’s higher levels, such as synthesis. Constructing high-level heuristics presents 
an interesting challenge for next phase of this research. Current attempts at constructing such higher-level heuristics 
suggest that ultimately domain-specific task models may be required to construct heuristics at higher level of 
Bloom’s taxonomy. For example, a sophisticated heuristic at the synthesis level will have to generate synthesis tasks 
for a software engineer and automatically mark the engineer’s performance on such tasks. The tasks need to go 
beyond the current synthesis heuristics that require an engineer to work through the consequences of various types of 
changes to a design artifact. Asking a software engineer to propose a novel solution in the context of an existing 
design artifact and automatically generating assessments to judge the feasibility of such solutions are non-trivial 
tasks that will likely require a sophisticated task and domain model.  
 
In summary, this paper represents a first set of experiments in automatically generating just-in-time assessments in 
the limited domain of software engineering. This approach can be applied to a large number of engineering and 
business contexts. The ultimate success of such an approach, however, will depend on one’s ability to generate 
specific heuristics for each domain.  
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